Skip to main content
Log in

Ni0.1Co0.9Fe2O4-based electrochemical sensor for the detection of paracetamol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor based on nickel-doped cobalt ferrite nanoparticles (Ni0.1Co0.9Fe2O4)-modified glassy carbon electrode (NCF/GCE) was presented for the sensitive detection of paracetamol. Experimental conditions such as pH, applied potentials and concentration were investigated using cyclic voltammetric and chronoamperometric techniques. The modified electrode exhibited excellent catalytic response towards the oxidation of paracetamol with good reproducibility. The overpotential for oxidation of paracetamol is decreased, and the current response enhanced significantly on the modified electrode in comparison with that of bare electrode. Linear calibration curve is obtained over the range 2 μM to 8,000 μM having a detection limit of 11 nM. The modified electrode facilitated the simultaneous detection of paracetamol, ascorbic acid, and dopamine with good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. J Mater Chem 21:13015–13024

    Article  CAS  Google Scholar 

  2. Bosch ME, Sanchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42:291–321

    Article  CAS  Google Scholar 

  3. Zen JM, Yuan ST (1997) Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Anal Chim Acta 342:175–180

    Article  CAS  Google Scholar 

  4. Cramer DW, Harlow BL, Ernstoff LT, Bohlke K, Welch WR, Greenberg ER (1998) Over-the-counter analgesics and risk of ovarian cancer. Lancet 351:104–107

    Article  CAS  Google Scholar 

  5. Wan Q, Wang X, Yu F, Wang X, Yang N (2009) Poly(taurine)/MWNT-modified glassy carbon electrodes for the detection of acetaminophen. J Appl Electrochem 39:785–790

    Article  CAS  Google Scholar 

  6. Prabakar SJR, Narayanan SS (2007) Amperometric determination of paracetamol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode. Talanta 72:1818–1827

    Article  CAS  Google Scholar 

  7. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  Google Scholar 

  8. Ye D, Xu Y, Luo L, Ding Y, Wang Y, Liu X (2012) LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol. J Solid State Electrochem 16:1635–1642

    CAS  Google Scholar 

  9. Gutes A, Calvo D, Cespedes F, del Valle M (2007) Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamol. Microchim Acta 157:1–6

    Article  CAS  Google Scholar 

  10. Moreira AB, Oliveira HPM, Atvars TDZ, Dias ILT, Neto GO, Zagatto EAG, Kubota LT (2005) Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy. Anal Chim Acta 539:257–261

    Article  CAS  Google Scholar 

  11. Erk N (1999) Application of derivative-differential UV spectrophotometry and ratio derivative spectrophotometric determination of mephenoxalone and acetaminophen in combined tablet preparation. J Pharm Biomed Anal 21:429–437

    Article  CAS  Google Scholar 

  12. Burgot G, Auffret F, Burgot JL (1997) Determination of acetaminophen by thermometric titrimetry. Anal Chim Acta 343:125–128

    Article  CAS  Google Scholar 

  13. Easwaramoorthy D, Yu YC, Huang HJ (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  CAS  Google Scholar 

  14. Ravisankar S, Vasudevan M, Gandhimathi M, Suresh B (1998) Reversed-phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. Talanta 46:1577–1581

    Article  CAS  Google Scholar 

  15. Peng W, Li T, Li H, Wang E (1994) Direct injection of urine and determination of acetaminophen by micellar liquid chromatography with a wall-jet cell/carbon fibre microelectrode. Anal Chim Acta 298:415–421

    Article  CAS  Google Scholar 

  16. He FY, Liu AL, Xia XH (2004) Poly(dimethylsiloxane) microchip capillary electrophoresis with electrochemical detection for rapid measurement of acetaminophen and its hydrolysate. Anal Bioanal Chem 379:1062–1067

    Article  CAS  Google Scholar 

  17. Heitmer S, Blaschke G (1999) Direct determination of paracetamol and its metabolites in urine and serum by capillary electrophoresis with ultraviolet and mass spectrometric detection. J Chromotogr B Biomed Sci Appl 721:93–108

    Article  Google Scholar 

  18. Suntornsuk L, Pipitharome O, Wilairat P (2003) Simultaneous determination of paracetamol and chlorpheniramine maleate by micellar electrokinetic chromatography. J Pharm Biomed Anal 33:441–449

    Article  CAS  Google Scholar 

  19. Valero E, Carrion P, Varon R, Carmona FG (2003) Quantification of acetaminophen by oxidation with tyrosinase in the presence of Besthorn’s hydrazine. Anal Biochem 318:187–195

    Article  CAS  Google Scholar 

  20. Ardakani MM, Beitollahi H, Amini MK, Mirkhalaf F, Alibiek MA (2010) New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles modified-carbon paste electrode. Sens Actuators B 151:243–249

    Article  Google Scholar 

  21. Lu D, Zhang Y, Wang L, Lin S, Wang C, Chen X (2012) Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. Talanta 88:181–186

    Article  CAS  Google Scholar 

  22. Yang G, Yu L, Jia J, Zhao Z (2012) 4-Aminobenzoic acid covalently modified glassy carbon electrode for sensing paracetamol at different temperatures. J Solid State Electrochem 16:1363–1368

    CAS  Google Scholar 

  23. Panda RN, Shih JC, Chin TS (2003) Magnetic properties of nano-crystalline Gd- or Pr- substituted CoFe2O4 synthesized by the citrate precursor technique. J Magn Magn Mater 257:79–86

    Article  CAS  Google Scholar 

  24. Singhal S, Singh J, Barthwal SK, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-xNixFe2O4). J Solid State Chem 178:3183–3189

    Article  CAS  Google Scholar 

  25. Sheikh AD, Mathe VL (2008) Anomalous electrical properties of nanocrystalline Ni-Zn ferrite. J Mater Sci 43:2018–2025

    Article  CAS  Google Scholar 

  26. Safavi A, Maleki N, Moradlou O (2008) A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis 20:2158–2162

    Article  CAS  Google Scholar 

  27. Raoof JB, Chekin F, Ojani R, Barari S, Anbia M, Mandegarzad S (2012) Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J Solid State Electrochem 16:3753–3760

    CAS  Google Scholar 

  28. Li SJ, Deng DH, Pang H, Liu L, Xing Y, Liu SR (2012) Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. J Solid State Electrochem 16:2883–2889

    CAS  Google Scholar 

  29. Nematollahi D, Shayani-jam H, Alimoradi M, Niroomand S (2009) Electrochemical oxidation of acetaminophen in aqueous solutions: kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochim Acta 54:7407–7415

    Article  CAS  Google Scholar 

  30. Habibi B, Jahanbakhshi M, Pournaghiazar MH (2011) Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes. Microchim Acta 172:147–154

    Article  CAS  Google Scholar 

  31. Fang YZ, Dajun L, Jiannong Y (1997) Study of acetaminophen by parallel incident spectroelectrochemistry. Anal Chim Acta 342:13–21

    Article  CAS  Google Scholar 

  32. Miner DJ, Rice JR, Riggin RM, Kissinger PT (1981) Voltammetry of acetaminophen and its metabolites. Anal Chem 53:2258–2263

    Article  CAS  Google Scholar 

  33. Yang G, Wang L, Jia J, Zhou D, Li D (2012) Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution. J Solid State Electrochem 16:2967–2977

    CAS  Google Scholar 

  34. Wang S, Xie F, Hu R (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens Actuators B 123:495–500

    Article  CAS  Google Scholar 

  35. Kang XH, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  36. Zhang Y, Luo LQ, Ding YP, Liu X, Qian ZY (2010) A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

  37. Chen X, Zhu J, Xi Q, Yang W (2012) A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films. Sens Actuators B 161:648–654

    Article  CAS  Google Scholar 

  38. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J (2012) Electrochemical determination of acetaminophen based on TiO2-graphene/ploy(methyl red) composite film modified electrode. J Mol Liq 165:32–37

    Article  CAS  Google Scholar 

  39. Chandra P, Son NX, Noh H-B, Goyal RN, Shim Y-B (2013) Investigation on the downregulation of dopamine by acetaminophen administration based on their simultaneous determination in urine. Biosens Bioelectron 15:139–144

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the financial support from the University Grants Commission, New Delhi and Sophisticated Test and Instrumentation center Cochin, Indian Institute of Technology Madars and Bombay for providing their instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Kumary Vidyadharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyadharan, A.K., Jayan, D. & Mary Nancy, T.E. Ni0.1Co0.9Fe2O4-based electrochemical sensor for the detection of paracetamol. J Solid State Electrochem 18, 2513–2519 (2014). https://doi.org/10.1007/s10008-014-2476-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2476-1

Keywords

Navigation