Skip to main content
Log in

A novel electrochemical sensor based on magneto LDH/Fe3O4 nanoparticles @ glassy carbon electrode for voltammetric determination of tramadol in real samples

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrochemical behavior of tramadol (TRA) on magneto layer double hydroxide (LDH)/Fe3O4@glassy carbon electrode (LDH/Fe3O4@GCE) was evaluated. Some theoretical thermodynamic and kinetic parameters were also determined using chronoamperometric and voltammetric methods. The ability of the modified electrode to determine trace amounts of TRA was studied using differential pulse voltammetry (DPV) as a sensitive electrochemical method. For characterizing and investigating the performance of LDH/Fe3O4@GCE, various methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV), and DPV were used. The effect of pH, scan rate, and time on the voltammetric response of TRA were investigated. Under the optimized conditions, the anodic peak current was linear for the concentration of TRA in the range 1.0–200.0 μmol L−1 with the detection limit of 3.0 × 10−1 μmol L−1. This method was also successfully used to detect the concentration of TRA in human serum and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miranda OR, Creran B (2010) Differentiation of prostate cancer cells using flexible fluorescence polymers. Curr Opin Boil 14:728–730

    Article  CAS  Google Scholar 

  2. De M, Ghosh PS (2008) Carbon dots for optical imaging in vivo. Adv Mater 20:4225–4229

    Article  CAS  Google Scholar 

  3. Anslyn EV, Rotello VM (2010) Gold nanoparticles in chemical and biological sensing. Curr Opin Chem Boil 14:683–689

    Article  CAS  Google Scholar 

  4. Coteb GL, Lec RM (2003) Gold nanoparticles and nanostructures in optical biosensors. IEEE Sensors J 3:251–255

    Article  Google Scholar 

  5. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

  6. Thomas SW, Joly GD (2007) Unusual protonation-induced continuous tunability of optical properties and electrochemiluminescence of a π-conjucated heterocyclic oligomer. Chem Rev 107:1339–1345

    Article  CAS  Google Scholar 

  7. He XP, Zhu BW, Zang Y, Li J, Chen GR, Tian H, Long YT (2015) Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chem Sci 6:1996–2001

    Article  CAS  Google Scholar 

  8. Hu XL, Zang Y, Li J, Chen GR, James TD, He XP, Tian H (2016) Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle composites. Chem Sci 7:4004–4008

    Article  CAS  Google Scholar 

  9. Mashhadizadeh MH, Rasouli F (2014) Design of a new carbon paste electrode modified with TiO2 nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanal 26:2033–2042

    Article  CAS  Google Scholar 

  10. Patel BN, Sharma N (2009) An accurate, rapid and sensitive determination of tramadol and its active metabolite O-desmethyltramadol in human plasma by LC-MS/MS. J Pharm Biomed Anal 49:354–358

    Article  CAS  Google Scholar 

  11. Epstein DH, Preston KL, Jasinski DR (2006) Handbook of pain and palliative care: biobehavioral approaches for the life. Biol Psychol 73:90–99

    Article  Google Scholar 

  12. Moore C, Rana S (2007) Determination of meperidine, tramadol and oxycodone in human oral fluid using solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr B 850:370–375

    Article  CAS  Google Scholar 

  13. Sha YF, Shen S (2005) Rapid determination of tramadol in human plasma by headspace solid-phase miroextraction and capillary gas chromatography-mass spectrometry. J Pharm Biomed Anal 37:143–146

    Article  CAS  Google Scholar 

  14. Ardakani YH, Mehvar R (2008) Enantioselective determination of tramadol and its main phase metabolites in human plasma by high-performance liquid chromatography. J 864:109–115

    CAS  Google Scholar 

  15. Ardakani YH, Rouini MR (2007) Improved liquid chromatography method for simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J Pharm Biomed Anal 44:1168–1170

    Article  CAS  Google Scholar 

  16. Ebrahimzadeh H, Yamini Y (2008) Determination of tramadol in human plasma and urine samples using liquid phase microextaction with back extraction combined with high performance liquid chromatography. J Chromatogr B 863:229–231

    Article  CAS  Google Scholar 

  17. Rouini MR, Ardakani YH (2006) Development and validation of a rapid HPLC method for simultaneous determination of tramadol, and its two main metabolites in human plasma. J Chromatogr B 830:207–210

    Article  CAS  Google Scholar 

  18. Vlase L, Leucuta SE (2008) Determination of tramadol and O-desmethyltramadol in human plasma by high-performance liquid chromatography with mass spectrometry detection. J Chromatogr B 75:1104–1109

    CAS  Google Scholar 

  19. Zecevic M, Stankovic Z (2006) Validation of a high-performance liquid chromatographic method for simultaneous determination of tramadol and its impurities in oral drops as a pharmaceutical formulation. J Chromatogr A 1119:251–258

    Article  CAS  Google Scholar 

  20. Paar WD, Frankus P (1996) High-performance liquid chromatographic assay for the simultaneous determination of tramadol in human plasma. J Chromatogr B 686:221–225

    Article  CAS  Google Scholar 

  21. Yeh GC, Yen CL (1999) High-performance liquid chromatographic method for determination of tramadol in human plasma. J Chromatogr B 723:247–255

    Article  CAS  Google Scholar 

  22. Gan SH, Ismail R (2001) Validation of a high-performance liquid chromatography method for tramadol and o-desmethyl tramadol in human plasma using solid phase extraction. J Chromatogr B 759:325–330

    Article  CAS  Google Scholar 

  23. Cao W, Liu J (2002) Simultaneous determination of tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection. Electrochim Acta 14:1571–1575

    CAS  Google Scholar 

  24. Li J, Ju H (2002) Simultaneous determination of ethamsylate, tramadol and lidocaine in human urine by capillary electrophoresis with electrochemiluminescence detection. Electro Chim Acta 27:3467–3469

    Google Scholar 

  25. Abdellatef HE, El-Henawee MM (2006) Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations. Spectrochim Acta Part A 65:1087–1090

    Article  Google Scholar 

  26. El-Gindy A, Ashour A (2001) First derivative spectrophotometric, TLC-desitometric, and HPLC determination of acebutolol HCl in presence of its acid-induced degradation product. J Pharm Biomed Anal 24:527–530

    Article  CAS  Google Scholar 

  27. Kucuk A, Kadioglu Y (2005) Determination of tramadol hydrochloride in ampoule dosage forms by using UV spectrophotometric and HPLC-DAD methods in methanol and water media. J Chromatogr Sci 60:163–165

    Google Scholar 

  28. Hathoot AA, Fahmy ME (2013) Electrooxidation and determination of tramadol in the presence of dopamine at poly 1, 8 diaminonaphthalene derivative modified platinuim electrode. Int J Chem 1:45–50

    Google Scholar 

  29. Ghorbani-Bidkordeh F, Shahrokian S (2010) Simultaneous voltametric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim Acta 55:2752–2755

    Article  Google Scholar 

  30. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Preparation of NiFe2O4/grapheme nanocomposite and its application as modified for fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal Chim Acta 831:50–60

    Article  CAS  Google Scholar 

  31. Soleimani M, Afshar MG (2013) High-selective tramadol sensor based on modified molecularly imprinted polymer carbon paste electrode with multi walled carbon nanotubes. Electrochim Acta 25:1159–1162

    CAS  Google Scholar 

  32. Santini AO, Pezza HR (2008) Development of a potentiometric flufenamate ISE and its application to pharmaceutical and clinical analyses. JABS 19:162–165

    CAS  Google Scholar 

  33. Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28

    Article  CAS  Google Scholar 

  34. Yang G, Zhao F, Zeng B (2014) Magnetic entrapment for fast and sensitive determination of metronidazole with a novel magnet-controlled glassy carbon electrode. Electrochim Acta 135:154–160

    Article  CAS  Google Scholar 

  35. Madrakian T, Haghshenas E, Ahmadi M, Afkhami A (2015) Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens Bioelectron 68:712–718

    Article  CAS  Google Scholar 

  36. Kergaravat SV, Beltramino L, Garnero N, Trotta L, Wagener M, Pividori MI, Hernandez SR (2013) Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease. Biosens Bioelectron 48:203–209

    Article  CAS  Google Scholar 

  37. Yang M, Li HL (2001) Determination of trace hydrazine by differential pulse voltammetry using magnetic microspheres. Talanta 55:479–484

    Article  Google Scholar 

  38. Abdolmohammad-Zadeh H, Rezvani Z, Sadeghi GH, Zorufi E (2011) Layered double hydroxides: a novel nano-sorbent for solid-phase extraction. Anal Chim Acta 685:212–219

    Article  CAS  Google Scholar 

  39. Haghshenas E, Madrakian T, Afkhami A (2015) A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Mat Sci and Engin C 57:205–208

    Article  CAS  Google Scholar 

  40. Verónica M, Graciela B, Norma A, Miguel L (2008) Ethanol steam reforming using Ni(II)-Al(III) layered double hydroxide as catalyst precursor. Chem Eng J 138:602–605

    Article  Google Scholar 

  41. Bankim J, Ashwini K (2011) Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal Chim Acta 706:246–254

    Article  Google Scholar 

  42. Garrido EM, Garrido JM, Borges F, Delerue-Matos C (2003) Development of electrochemical methods for determination of tramadol–analytical application to pharmaceutical dosage forms. J Pharm Biomed Anal 325:975–981

    Article  Google Scholar 

  43. Aysel K, Yucel K, Duygu E (2010) Electrochemical determination of tramadol in ampoule dosage forms by cyclic voltammetry. Asia J Chem 22:159–167

    Google Scholar 

  44. Omnia A, Mervat I, Hosny M (2012) Development and validation of a spectrophotometric method for the determination of tramadol in human urine using liquid-liquid extraction and ion pair formation. Inter J Instr Sci 3:4034–4036

    Google Scholar 

  45. Ardakani YH, Rouini MR (2007) Improved liquid chromatographic method for the simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J Pharma Biomed Anals 44:1168–1173

    Article  CAS  Google Scholar 

  46. Küçüka A, Kadıoğlu Y, Çelebic F (2005) Investigation of the pharmacokinetics and determination of tramadol in rabbit plasma by a high-performance liquid chromatography–diode array detector method using liquid–liquid extraction. J Chroma B 55:203–208

    Article  Google Scholar 

  47. Ceccato A, Vanderbist F, Pabst JY, Streel B (2000) Enantiomeric determination of tramadol and its main metabolite O-desmethyltramadol in human plasma by liquid chromatography–tandem mass spectrometry. J Chroma B: Biomed Sci Appl 748:65–76

    Article  CAS  Google Scholar 

  48. Afkhami A, Ghaedi H, Madrakian T, Ahmadi M, Mahmood-Kashani H (2013) Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens Bioelectron 44:34–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Bu-Ali Sina University and Urmia University Research Council and Center of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS) for providing support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyebeh Madrakian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madrakian, T., Alizadeh, S., Bahram, M. et al. A novel electrochemical sensor based on magneto LDH/Fe3O4 nanoparticles @ glassy carbon electrode for voltammetric determination of tramadol in real samples. Ionics 23, 1005–1015 (2017). https://doi.org/10.1007/s11581-016-1871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1871-2

Keywords

Navigation