Skip to main content
Log in

Thermal decomposition mechanisms of energetic CL-20-based co-crystals: quantum molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The decomposition mechanisms of energetic CL-20:2,4-dinitro-2,4-diazapentane (DNP) and CL-20:2,4-dinitro-2,4-diazaheptane (DNG) co-crystals at high temperatures (1000, 2000, and 3000 K) were studied by density functional tight-binding molecular dynamics (DFTB-MD) simulations. At different temperatures, their decomposition mechanisms are very different. At 1000 K, conformational changes are observed only for the CL-20:DNG co-crystal, in which the CL-20 changes from β-CL-20 to γ-CL-20. When the temperature is increased to 2000 K, CL-20, DNP, and DNG begin to decompose, and there are five paths for the main initial mechanisms. Further increasing the temperature to 3000 K promotes a more complete decomposition. The initial reactions of CL-20 in the two co-crystals have two channels. There are two initial decomposition channels in the DNP molecule and only one channel in the DNG molecule. As the temperature increases, the decomposition products of the two co-crystals are different. Our work may provide the in-depth understanding of the decomposition mechanisms of high-energy CL-20-based co-crystals at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Thottempudi V, Gao HX, Shreeve JM (2011) Trinitromethylsubstituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc 133:6464–6471

    Article  CAS  PubMed  Google Scholar 

  2. Wu Q, Tan LH, Hang ZS, Wang JY, Zhang ZW, Zhu WH (2015) A new design strategy on cage insensitive high explosives: symmetrically replacing carbon atoms by nitrogen atoms followed by the introduction of N-oxides. RSC Adv 5:93607–93614

    Article  CAS  Google Scholar 

  3. Wu Q, Zhu WH, Xiao HM (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and noxide in one molecule of 1-amino-5-nitrotetrazole-3N-oxide. J Mater Chem A 2:13006–13015

    Article  CAS  Google Scholar 

  4. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  PubMed  Google Scholar 

  5. Guo YY, Chi WJ, Li ZS, Li QS (2015) Molecular design of N-NO2 substituted cycloalkanes derivatives Cm(N-NO2)m for energetic materials with high detonation performance and low impact sensitivity. RSC Adv 5:38048–38055

    Article  CAS  Google Scholar 

  6. Gao B, Wang DJ, Zhang J, Hu YJ, Shen JP, Wang J, Huang B, Qiao ZQ, Huang H, Nie FD, Yang GC (2014) Facile, continuous and large-scale synthesis of CL-20/HMX nano co-crystals with high-performance by ultrasonic spray-assisted electrostatic adsorption method. J Mater Chem A 2:19969–19974

    Article  CAS  Google Scholar 

  7. Bennion JC, McBain A, Son SF, Matzger AJ (2015) Design and synthesis of a series of nitrogen-rich energetic co-crystals of 5,5′-dinitro-2H,2H′-3,3′-bi-1,2,4-triazole (DNBT). Cryst Growth Des 15:2545–2549

    Article  CAS  Google Scholar 

  8. Zhang CY, Xue XG, Cao YF, Zhou JH, Zhang AB, Li HZ, Zhou Y, Xu RJ, Gao T (2014) Toward low-sensitive and high-energetic co-crystal II: structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic co-crystals. CrystEngComm 16:5905–5916

    Article  CAS  Google Scholar 

  9. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive co-crystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  10. Zhang HB, Guo CY, Wang XC, Xu JJ, He X, Liu Y, Liu XF, Huang H, Sun J (2013) Five energetic co-crystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  Google Scholar 

  11. Lin H, Zhu SG, Zhang L, Peng XH, Chen PY, Li HZ (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO co-crystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  12. Millar DIA, Maynard-Casely HE, Allan DR, Cumming AS, Lennie AR, Mackay AJ, Oswald IDH, Tang CC, Pulhama CR (2012) Crystal engineering of energetic materials: co-crystals of CL-20. Cryst Eng Comm 14:3742–3749

    Article  CAS  Google Scholar 

  13. Landenberger KB, Matzger AJ (2010) Co-crystal engineering of a prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  14. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic co-crystal. Angew Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  15. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 co-crystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  16. Yang ZW, Li HZ, Zhou XQ, Zhang CY, Huang H, Li JS, Nie FD (2012) Characterization and properties of a novel energetic-energetic co-crystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  17. Wang Y, Yang Z, Li H, Zhou X, Qi Z, Wang J, Liu Y (2014) A novel co-crystal explosive of HNIW with good comprehensive properties. Propell Explos Pyrot 39:590–596

    Article  CAS  Google Scholar 

  18. Zhang CY, Yang ZW, Zhou XQ, Zhang CH, Ma Y, Xu JJ, Zhang Q, Nie FD, Li HZ (2014) Evident hydrogen bonded chains building CL-20-based co-crystals. Cryst Growth Des 14:3923–3928

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energ Mat 8:209–220

    CAS  Google Scholar 

  20. Zhu SF, Zhang SH, Gou RJ, Han G, Wu CL, Ren FD (2017) Theoretical investigation of the effects of the molar ratio and solvent on the formation of the pyrazole–nitroamine co-crystal explosive 3,4-dinitropyrazole (DNP)/2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20). J Mol Model 23:1–14

    Article  Google Scholar 

  21. Zhu W (2022) Quantum chemical investigations of reaction mechanism. Theor Comput Chem 22:291–345

    Article  Google Scholar 

  22. Iftimie R, Minary P, Tuckerman ME (2005) Ab initio molecular dynamics: concepts, recent developments, and future trends. P Natl Acad Sci USA 102:6654–6659

    Article  CAS  Google Scholar 

  23. Wu Q, Zhu WH, Xiao HM (2014) An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine. Chem Phys 16:21620–21628

    CAS  Google Scholar 

  24. Ye CC, An Q, Goddard WA III, Cheng T, Zybin S, Ju XH (2015) Initial decomposition reactions of bicyclo-HMX [BCHMX or cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole] from quantum molecular dynamics simulations. J Phys Chem C 119:2290–2296

    Article  CAS  Google Scholar 

  25. Wu Q, Chen H, Xiong GL, Zhu WH, Xiao HM (2015) Decomposition of a 1,3,5-triamino-2,4,6-trinitrobenzene crystal at decomposition temperature coupled with different pressures: an ab initio molecular dynamics study. J Phys Chem C 119:16500–16506

    Article  CAS  Google Scholar 

  26. Wu Q, Xiong GL, Zhu WH, Xiao HM (2015) How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX. Chem Phys 17:22823–22831

    CAS  Google Scholar 

  27. Xiang D, Wu Q, Zhu WH (2018) Decomposition mechanisms of α-RDX crystal under high temperature coupled with detonation pressure by ab initio molecular dynamics simulations. Chin J Energ Mater 6:477–482

    Google Scholar 

  28. Isayev O, Gorb L, Qasim M, Leszczynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112:11005–11013

    Article  CAS  PubMed  Google Scholar 

  29. Xue X, Ma Y, Zeng Q, Zhang C (2017) Initial decay mechanism of the heated CL-20/HMX co-crystal: a case of the co-crystal mediating the thermal stability of the two pure components. J Phys Chem C 121:4899–4908

    Article  CAS  Google Scholar 

  30. Wu XW, Liu ZC, Zhu WH (2020) Conformational changes and decomposition mechanisms of HMX-based co-crystal explosives at high temperatures. J Phys Chem C 124:25–36

    Article  CAS  Google Scholar 

  31. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B Condens Matter Mater Phys 58:7260–7268

    Article  CAS  Google Scholar 

  32. Brandenburg JG, Grimme S (2014) Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J Phys Chem Lett 5:1785–1789

    Article  CAS  PubMed  Google Scholar 

  33. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684

    Article  CAS  PubMed  Google Scholar 

  34. Elstner M (2007) SCC-DFTB: what is the proper degree of self-consistency. J Phys Chem A 111:5614–5621

    Article  CAS  PubMed  Google Scholar 

  35. Elstner M (2006) The SCC-DFTB method and its application to biological systems. Theor Chem Acc 116:316–325

    Article  CAS  Google Scholar 

  36. The CP2K developers group, CP2K User Manual, Zurich (2003) http://cpk2.berlios.de

  37. Goncharov T K, Aliev Z G, Aldoshin S M, Dashko D V, Vasileva A A, Shishov N I, Milekhinc Y M (2015) Preparation, structure, and main properties of bimolecular crystals CL-20-DNP and CL-20-DNG. Russ Chem B+ 64: 366−374

  38. Byrd RH, Lu PH, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208

    Article  Google Scholar 

  39. An Q, Liu WG, Goddard WA, Cheng T, Zybin SV, Xiao H (2014) Initial steps of thermal decomposition of dihydroxylammonium 5, 50-bistetrazole-1, 10-diolate crystals from quantum mechanics. J Phys Chem C 118:27175–27181

    Article  CAS  Google Scholar 

  40. Wood MA, Vanduin ACT, Strachan A (2014) Coupled thermal and electromagnetic induced decomposition in the molecular explosive α-HMX; a reactive molecular dynamics study. J Phys Chem A 118:885–895

    Article  CAS  PubMed  Google Scholar 

  41. Manaa MR, Reed EJ, Fried LE, Goldman N (2009) Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives. J Am Chem Soc 131:5483–5487

    Article  CAS  PubMed  Google Scholar 

  42. Manaa MR, Fried LE, Melius CF, Elstner M, Frauenheim T (2002) Decomposition of HMX at extreme conditions: a molecular dynamics simulation. J Phys Chem A 106:9024–9029

    Article  CAS  Google Scholar 

  43. Wu CJ, Fried LE, Yang LH, Goldman N, Bastea S (2009) Catalytic behavior of dense hot water. Nat Chem 1:57–62

    Article  CAS  PubMed  Google Scholar 

  44. Sun XY, Sui ZL, Wang JK, Li XD, Wang XQ, Dai RC, Wang ZP, Huang SL, Zhang ZM (2020) Phase transition routes for ε- and γ-CL-20 crystals under high pressures of up to 60GPa. J Phys Chem C 124:5061–5068

    Article  CAS  Google Scholar 

  45. Zhang J, Xiao HM (2002) Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism of octanitrocubane. J Chem Phys 116:10674–10683

    Article  CAS  Google Scholar 

  46. Xiang D, Wu Q, Zhu WH (2018) Ab initio molecular dynamics studies on the decomposition mechanisms of CL-20 crystal under extreme conditions. J Energ Mater 26:59–65

    CAS  Google Scholar 

  47. Xiang D, Zhu WH (2017) Thermal decomposition of isolated and crystal 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane according to ab initio molecular dynamics simulations. RSC Adv 7:8347–8356

    Article  CAS  Google Scholar 

  48. Waseda Y (1982) The structure of non-crystalline materials: liquids and amorphous solids. Mater Sci Eng 52:89–90

    Article  Google Scholar 

  49. Ji JC, Wang K, Zhu SM, Zhu WH (2021) Structure, intermolecular interactions, and dynamic properties of NTO crystals with impurity defects: a computational study. Cryst Eng Comm 23:2455–2468

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 21773119).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Li Tang. The first draft of the manuscript was written by Li Tang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihua Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhu, W. Thermal decomposition mechanisms of energetic CL-20-based co-crystals: quantum molecular dynamics simulations. J Mol Model 28, 326 (2022). https://doi.org/10.1007/s00894-022-05327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05327-0

Keywords

Navigation