Skip to main content

Advertisement

Log in

Influence of shear strain on the electronic properties of monolayers MoS2, WS2, and MoS2/WS2 vdW heterostructure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This study investigates the dynamic stability of monolayers MoS2, WS2, and MoS2/WS2 van der Waals heterostructures (vdWHs) and the influence of shear strain on their electronic properties. The computational results of the binding energy and phonon dispersion demonstrate the excellent dynamic stability of MoS2/WS2 vdWHs. The MoS2/WS2 vdWH, with a type-II band alignment and an indirect bandgap, reduces electron–hole recombination, enhancing the efficiency and performance of optoelectronic devices. Under shear strain, the bandgap size and type of monolayers MoS2, WS2, and MoS2/WS2 vdWHs were effectively modulated, along with the interlayer charge redistribution in the MoS2/WS2 vdWHs. This work reveals the tunability of the electronic properties of monolayers MoS2, WS2, and MoS2/WS2 vdWHs under shear strain, offering new possibilities and solutions for developing optoelectronic devices, sensors, and related fields.

Methods

This work employed the CASTEP module within the Materials Studio software package for first-principles calculations. Ultrasoft pseudopotentials were employed during geometry optimizations to account for ion–electron interactions using the GGA-PBE functional for exchange–correlation potentials. The electronic configurations of the S, Mo, and W atoms were chosen as their typical arrangements: (3s2p4), (4s2p6d55s1), and (5s2p6d46s2), respectively. A vacuum layer of 20 Å was added to avoid interactions between the atomic layers. A cutoff energy of 500 eV was set for structural optimization and self-consistent calculations, with k-point grids of 6 × 6 × 1 and 9 × 9 × 1. During the structural optimization process, the energy convergence criterion was set to 1 × 10−5 eV, and the thresholds for interatomic forces and stresses were set to 0.01 eV/Å and 0.01 GPa, respectively. Grimmer’s DFT-D2 correction accounted for the interlayer vdW interactions in the MoS2/WS2 vdWH, while the phonon dispersion was calculated using the linear response method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Thakur D, Sato Y, Sabarigresan M, Ramadurai R, Balakrishnan V (2022) Enhanced optical emission at MoS2-WS2 heterostructure interface with n-N junction. Appl Surf Sci 606:154923. https://doi.org/10.1016/j.apsusc.2022.154923

    Article  CAS  Google Scholar 

  2. Zhu XD, He JB, Zhang RJ, Cong CX, Zheng YX, Zhang H, Wang SY, Zhao HB, Zhu MP, Zhang SW, Li SJ, Chen LY (2022) Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Res 15(3):2674–2681. https://doi.org/10.1007/s12274-021-3774-4

    Article  CAS  Google Scholar 

  3. Han D, Sun HY, Ding WY, Chen Y, Wang XY, Cheng L (2020) Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations. Phys E 124:114312. https://doi.org/10.1016/j.physe.2020.114312

    Article  CAS  Google Scholar 

  4. Liu SX, Zhao Y, Cao S, Chen SK, Wang CX, Shi X, Zhao HQ (2024) High photoresponse detectors based on Yb-doped monolayer WS2 nanosheets. Appl Surf Sci 652:159287. https://doi.org/10.1016/j.apsusc.2024.159287

    Article  CAS  Google Scholar 

  5. Zhao YF, Tang MM, He L (2024) Transition metal (Mn, Fe Co, Ni) and nitrogen co-doping for improving the photocatalytic activity of monolayer MoS2. Mol Catal 553:113785. https://doi.org/10.1016/j.mcat.2023.113785

    Article  CAS  Google Scholar 

  6. Xue L, Ren Y, He J-R, Zhao Y, Xu S-L, Hu Y, Hua C-B (2024) The mechanical and thermal parameters of two-dimensional hexagonal materials evaluated using elastic properties: monolayer MoS2 as an example. Results Phys 57:107418

    Article  Google Scholar 

  7. Zhang WL, Ma Z, Wang J, Shao B, Zuo X (2024) Tunability of electronic properties in the 2D MoS2/a-tellurene/WS2 heterotrilayer via biaxial strain and electric field. Phys Chem Chem Phys 26(7):6362–6371. https://doi.org/10.1039/d3cp06002k

    Article  CAS  PubMed  Google Scholar 

  8. Sachin S, Kumari P, Gupta N, Rani S, Kar S, Ray SJ (2023) Van der Waals twistronics in a MoS2/WS2 heterostructure. Comput Condens Matter 35:00797. https://doi.org/10.1016/j.cocom.2023.e00797

    Article  Google Scholar 

  9. Shahrokhi M, Le Bahers T, Raybaud P (2022) Tailoring the optoelectronic properties and dielectric profiles of few-layer S-doped MoO3 and O-doped MoS2 nanosheets: a first-principles study. Phys Chem Chem Phys 24(41):25440–25451. https://doi.org/10.1039/d2cp03410g

    Article  CAS  PubMed  Google Scholar 

  10. Shahrokhi M, Raybaud P, Le Bahers T (2021) 2D MoO3−xSx/MoS2 van der Waals assembly: a tunable heterojunction with attractive properties for photocatalysis. ACS Appl Mater Interfaces 13(30):36465–36474. https://doi.org/10.1021/acsami.1c08200

    Article  CAS  PubMed  Google Scholar 

  11. Shahrokhi M, Raybaud P, Le Bahers T (2020) On the understanding of the optoelectronic properties of S-doped MoO3 and O-doped MoS2 bulk systems: a DFT perspective. J Mater Chem C 8(26):9064–9074. https://doi.org/10.1039/d0tc02066d

    Article  CAS  Google Scholar 

  12. Chen YC, Sun MT (2021) Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale 13(11):5594–5619. https://doi.org/10.1039/d1nr00455g

    Article  CAS  PubMed  Google Scholar 

  13. Gong YJ, Lin JH, Wang XL, Shi G, Lei SD, Lin Z, Zou XL, Ye GL, Vajtai R, Yakobson BI, Terrones H, Terrones M, Tay BK, Lou J, Pantelides ST, Liu Z, Zhou W, Ajayan PM (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13(12):1135–1142. https://doi.org/10.1038/nmat4091

    Article  CAS  PubMed  Google Scholar 

  14. Mallik SK, Jena AK, Sharma NK, Sahoo S, Sahu MC, Gupta SK, Ahuja R, Sahoo S (2022) Transition metal substituted MoS2/WS2 van der Waals heterostructure for realization of dilute magnetic semiconductors. J Magn Magn Mater 560:169567. https://doi.org/10.1016/j.jmmm.2022.169567

    Article  CAS  Google Scholar 

  15. Liu PP, Shao ZG, Luo WM, Li HB, Yang M (2021) Photoelectric properties of monolayer WS2-MoS2 lateral heterojunction from first principles. Phys Lett A 420:127771. https://doi.org/10.1016/j.physleta.2021.127771

    Article  CAS  Google Scholar 

  16. Mahmood A, Lu GH, Wang X, Wang Y, Xie XF, Sun J (2022) Investigating the stability and role of defects in vertically aligned WS2/MoS2 heterojunctions on OER activity using first principles study. J Power Sources 551:232208. https://doi.org/10.1016/j.jpowsour.2022.232208

    Article  CAS  Google Scholar 

  17. He X, Li H, Zhu ZY, Dai ZY, Yang Y, Yang P, Zhang Q, Li P, Schwingenschlogl U, Zhang XX (2016) Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl Phys Lett 109(17):173105. https://doi.org/10.1063/1.4966218

    Article  CAS  Google Scholar 

  18. Lakshmy S, Kandasamy M, Kalarikkal N, Chakraborty B (2024) Effect of biaxial strain and vacancy defects in 2D MoS2 monolayer for the sensing of nitrobenzene: a DFT investigation. Surf Interfaces 44:103777. https://doi.org/10.1016/j.surfin.2023.103777

    Article  CAS  Google Scholar 

  19. Chaudhuri S, Das AK, Das GP, Dev BN (2023) Strain induced effects on the electronic and phononic properties of 2H and 1T′ monolayer MoS2. Phys B 655:414701. https://doi.org/10.1016/j.physb.2023.414701

    Article  CAS  Google Scholar 

  20. Muoi D, Hieu NN, Phung HTT, Phuc HV, Amin B, Hoi BD, Hieu NV, Nhan LC, Nguyen CV, Le PTT (2019) Electronic properties of WS2 and WSe2 monolayers with biaxial strain: a first-principles study. Chem Phys 519:69–73. https://doi.org/10.1016/j.chemphys.2018.12.004

    Article  CAS  Google Scholar 

  21. Choudhary M, Shital S, Ya’akobovitz A, Niv A (2020) Shear strain bandgap tuning of monolayer MoS2. Appl Phys Lett 117(22):223102. https://doi.org/10.1063/5.0022908

    Article  CAS  Google Scholar 

  22. Bao JL, Liu GL, Li F, Yang L, Yang ZH, Zhang GY (2024) Characterization of electronic structure, magnetism, and electric field manipulation in non-metal doped monolayer 1T-HfS2. Chem Phys 578:112164. https://doi.org/10.1016/j.chemphys.2023.112164

    Article  CAS  Google Scholar 

  23. Yagmurcukardes M, Ozen S, Iyikanat F, Peeters FM, Sahin H (2019) Raman fingerprint of stacking order in HfS2-Ca(OH)2 heterobilayer. Phys Rev B 99(20):205405. https://doi.org/10.1103/PhysRevB.99.205405

    Article  CAS  Google Scholar 

  24. Zou H, Peng M, Zhou W, Pan J, Ouyang F (2021) Type II GaS/AlN van der Waals heterostructure: vertical strain, in-plane biaxial strain and electric field effect. Phys E 126:114481. https://doi.org/10.1016/j.physe.2020.114481

    Article  CAS  Google Scholar 

  25. Li DX, Li RQ, Zhou DT, Zeng FJ, Yan WJ (2023) Efficient charge separation and improved photoelectric properties of GaN/ WS2/MoS2 heterojunction: a molecular dynamics simulations. Results Phys 55:107182. https://doi.org/10.1016/j.rinp.2023.107182

    Article  Google Scholar 

  26. Zhu HL, Zhou CJ, Wu YP, Lin W, Yang WH, Cheng ZJ, Cai XM (2017) Effects of interlayer polarization field on the band structures of the WS2/MoS2 and WSe2/MoSe2 heterostructures. Surf Sci 661:1–9. https://doi.org/10.1016/j.susc.2017.02.013

    Article  CAS  Google Scholar 

  27. Hill HM, Rigosi AF, Rim KT, Flynn GW, Heinz TF (2016) Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett 16(8):4831–4837. https://doi.org/10.1021/acs.nanolett.6b01007

    Article  CAS  PubMed  Google Scholar 

  28. Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K (2013) Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors (vol 103, 053513, 2013). Appl Phys Lett 107(13):053515. https://doi.org/10.1063/1.4932088

    Article  CAS  Google Scholar 

  29. Xu W, Sun T, Jiang Y, Qu X, Yan X, Wang L, Wang X, Huang J, Wu X (2022) Topological states in MoS2 and WS2 monolayers with stacking faults induced period line defects: first-principles calculations. Phys Lett A 451:128398. https://doi.org/10.1016/j.physleta.2022.128398

    Article  CAS  Google Scholar 

  30. Ozbal G, Senger RT, Sevik C, Sevincli H (2019) Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides. Phys Rev B 100(8):085415. https://doi.org/10.1103/PhysRevB.100.085415

    Article  CAS  Google Scholar 

  31. Kumar A, He H, Pandey R, Ahluwalia PK, Tankeshwar K (2015) Pressure and electric field-induced metallization in the phase-engineered ZrX<sub>2</sub> (X = S, Se, Te) bilayers. TitlePhys Chem Chem Phys 17(29):19215–19221. https://doi.org/10.1039/c5cp01445j

    Article  CAS  Google Scholar 

  32. Cao JM, Wang WQ, Zhou J, Chen JY, Deng HC, Zhang YF, Liu XW (2020) Controllable gas sensitive performance of 1 T’ WS2 monolayer instructed by strain: first-principles simulations. Chem Phys Lett 758:137921. https://doi.org/10.1016/j.cplett.2020.137921

    Article  CAS  Google Scholar 

  33. Bao J, Yang L, Liu G, Wang Y, Liu T (2023) Strain induced modification in thermal properties of monolayer 1T-HfS2 and HfS2/HfSe2 heterojunction. Chem Phys 575:112003. https://doi.org/10.1016/j.chemphys.2023.112003

    Article  CAS  Google Scholar 

  34. Bafekry A, Stampfl C, Naseri M, Fadlallah MM, Faraji M, Ghergherehchi M, Gogova D, Feghhi SAH (2021) Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: a first-principles calculation. J Appl Phys 129(15):155103. https://doi.org/10.1063/5.0044976

    Article  CAS  Google Scholar 

  35. Bafekry A, Stampfl C, Ghergherehchi M (2020) Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and /C3N4 van der Waals heterostructures. Nanotechnology 31(29):295202. https://doi.org/10.1088/1361-6528/ab884e

    Article  CAS  PubMed  Google Scholar 

  36. Palepu J, Tiwari A, Sahatiya P, Kundu S, Kanungo S (2022) Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe- a first principle study. Mater Sci Semicond Process 137:106236. https://doi.org/10.1016/j.mssp.2021.106236

    Article  CAS  Google Scholar 

  37. Lu N, Guo H, Li L, Dai J, Wang L, Mei W-N, Wu X, Zeng XC (2014) MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6(5):2879–2886. https://doi.org/10.1039/c3nr06072a

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Gao SS, Meng Y (2015) Tuning carrier confinement in the MoS2/WS2 heterostructure. Superlattices Microstruct 88:12–17. https://doi.org/10.1016/j.spmi.2015.08.024

    Article  CAS  Google Scholar 

  39. Farkous M, Bikerouin M, Thuan DV, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen CV, Hieu NV, Bui HD, Hieu NN, Phuc HV (2020) Strain effects on the electronic and optical properties of van der Waals heterostructure MoS2/WS2: a first-principles study. Phys E 116:113799. https://doi.org/10.1016/j.physe.2019.113799

    Article  CAS  Google Scholar 

  40. Colibaba SA, Körbel S, Motta C, El-Mellouhi F, Sanvito S (2019) Interlayer dielectric function of a type-II van der Waals semiconductor: the HfS2/PtS2 heterobilayer. Phys Rev Mater 3(12):124002. https://doi.org/10.1103/PhysRevMaterials.3.124002

    Article  CAS  Google Scholar 

  41. Zhang R, Zhang Y, Wei X, Guo T, Fan J, Ni L, Weng Y, Zha Z, Liu J, Tian Y, Li T, Duan L (2020) Type-II band alignment A1N/InSe van der Waals heterostructure: vertical strain and external electric field. Appl Surf Sci 528:146782. https://doi.org/10.1016/j.apsusc.2020.146782

    Article  CAS  Google Scholar 

  42. Zhang JM, Gao XY, Wei XM, Huang YH, Ali A, Shahid I (2022) Tailoring the electronic and optical properties of ZrS2/ZrSe2 vdW heterostructure by strain engineering. Thin Solid Films 755:139332. https://doi.org/10.1016/j.tsf.2022.139332

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Liaoning Provincial Department of Education’s Basic Research Project for Universities (grant number [JYTMS20230337]) and Liaoning Provincial Department of Science and Technology Joint Fund Project for Enhancing Innovation Capability (grant number [2022-NLTS-16–03]).

Author information

Authors and Affiliations

Authors

Contributions

The work was completed by Yimin Sun alone.

Corresponding author

Correspondence to Yimin Sun.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.50 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y. Influence of shear strain on the electronic properties of monolayers MoS2, WS2, and MoS2/WS2 vdW heterostructure. J Mol Model 30, 112 (2024). https://doi.org/10.1007/s00894-024-05913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05913-4

Keywords

Navigation