Skip to main content
Log in

Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inserting hexagonal boron nitride (hBN) as barrier layers into bilayer transition metal dichalcogenides heterointerface has been proved an efficient method to improve two dimensional tunneling optoelectronic device performance. Nevertheless, the physical picture of interlayer coupling effect during incorporation of monolayer (1L-) hBN is not explicit yet. In this article, spectroscopic ellipsometry was used to experimentally obtain the broadband excitonic and critical point properties of WS2/MoS2 and WS2/hBN/MoS2 van der Waals heterostructures. We find that 1L-hBN can only slightly block the interlayer electron transfer from WS2 layer to MoS2 layer. Moreover, insertion of 1L-hBN weakens the interlayer coupling effect by releasing quantum confinement and reducing efficient dielectric screening. Consequently, the exciton binding energies in WS2/hBN/MoS2 heterostructures blueshift comparing to those in WS2/MoS2 heterostructures. In this exciton binding energies tuning process, the reducing dielectric screening effect plays a leading role. In the meantime, the quasi-particle (QP) bandgap remains unchanged before and after 1L-hBN insertion, which is attributed to released quantum confinement and decreased dielectric screening effects canceling each other. Unchanged QP bandgap as along with blueshift exciton binding energies lead to the redshift exciton transition energies in WS2/hBN/MoS2 heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1.  Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.

    Article  Google Scholar 

  2. Shim, J.; Kang, D. H.; Kim, Y.; Kum, H.; Kong, W.; Bae, S. H.; Almansouri, I.; Lee, K.; Park, J. H.; Kim, J. Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon 2018, 133, 78–89.

    Article  CAS  Google Scholar 

  3. Zhu, S.; Gong, L. J.; Xie, J. N.; Gu, Z. J.; Zhao, Y. L. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 2017, 1, 1700220.

    Article  Google Scholar 

  4. Hu, W.; Yang, J. L. Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C 2017, 5, 12289–12297.

    Article  CAS  Google Scholar 

  5. Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.

    Article  CAS  Google Scholar 

  6. Singh, E.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 2017, 9, 3223–3245.

    Article  CAS  Google Scholar 

  7. Cheng, R.; Li, D. H; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

    Article  CAS  Google Scholar 

  8. Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638–643.

    Article  CAS  Google Scholar 

  9. Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.

    Article  CAS  Google Scholar 

  10. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    Article  CAS  Google Scholar 

  11.  Zheng, Y.; Xiang, D.; Zhang, J. L.; Guo, R.; Wang, W. H.; Liu, T.; Loh, L. Y.; Wang, Y. N.; Gao, J.; Han, C. et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 2021, 14, 2703–2710.

    Article  Google Scholar 

  12. Dalila, R. N.; Md Arshad, M. K.; Gopinath, S. C. B.; Norhaimi, W. M. W.; Fathil, M. F. M. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens. Bioelectron. 2019, 132, 248–264.

    Article  CAS  Google Scholar 

  13. Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. H. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

    Article  CAS  Google Scholar 

  14. Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Photodetectors based on two-dimensional materials and their van der waals heterostructures. Acta Phys. Chim. Sin. 2019, 35, 1058–1077.

    Article  CAS  Google Scholar 

  15. Wasalathilake, K. C.; Hu, N.; Fu, S. Y.; Zheng, J. C.; Du, A. J.; Yan, C. High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium-ion batteries: A first-principles investigation. Appl. Surf. Sci. 2021, 536, 147779.

    Article  CAS  Google Scholar 

  16. Pataniya, P. M.; Late, D.; Sumesh, C. K. Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 755–762.

    Article  CAS  Google Scholar 

  17. Lin, Y.; Pan, D. M.; Luo, H. Hollow direct Z-scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process. 2021, 121, 105453.

    Article  CAS  Google Scholar 

  18. Li, X.; Zhang, S.; Wang, X. J.; Huang, G. F.; Xia, L. X.; Hu, W. Y.; Huang, W. Q. A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: First-principles investigations. Phys. E Low Dimens. Syst. Nanostruct. 2021, 126, 114453.

    Article  CAS  Google Scholar 

  19. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  20. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  CAS  Google Scholar 

  21. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

    Article  CAS  Google Scholar 

  22. Binder, J.; Withers, F.; Molas, M. R.; Faugeras, C.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; Kozikov, A.; Geim, A. K.; Novoselov, K. S. et al. Sub-bandgap voltage electroluminescence and magneto-oscillations in a WSe2 light-emitting van der Waals heterostructure. Nano Lett. 2017, 17, 1425–1430.

    Article  CAS  Google Scholar 

  23. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  24. Chiu, M. H.; Li, Y. M.; Zhang, W. G.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 2014, 8, 9649–9656.

    Article  CAS  Google Scholar 

  25. Gao, S. Y.; Yang, L.; Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017, 17, 7809–7813.

    Article  CAS  Google Scholar 

  26. Xia, W. S.; Dai, L. P.; Yu, P.; Tong, X.; Song, W. P.; Zhang, G. J.; Wang, Z. M. Recent progress in van der Waals heterojunctions. Nanoscale 2017, 9, 4324–4365.

    Article  CAS  Google Scholar 

  27. Pant, A.; Mutlu, Z.; Wickramaratne, D.; Cai, H.; Lake, R. K.; Ozkan, C.; Tongay, S. Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale 2016, 8, 3870–3887.

    Article  CAS  Google Scholar 

  28. Torun, E.; Miranda, H. P. C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 2018, 97, 245427.

    Article  CAS  Google Scholar 

  29. Zhu, X. D.; He, J. B.; Zhang, R. J.; Cong, C. X.; Zheng, Y. X.; Zhang, H.; Zhang, S. W.; Chen, L. Y. Effects of dielectric screening on the excitonic and critical points properties of WS2/MoS2 heterostructures. Nanoscale 2020, 12, 23732–23739.

    Article  CAS  Google Scholar 

  30. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    Article  CAS  Google Scholar 

  31. Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

    Article  CAS  Google Scholar 

  32. Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

    Article  CAS  Google Scholar 

  33. Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

    Article  Google Scholar 

  34. Bradley, A. J.; Ugeda, M. M.; Da Jornada, F. H.; Qiu, D. Y.; Ruan, W.; Zhang, Y.; Wickenburg, S.; Riss, A.; Lu, J.; Mo, S. K. et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594–2599.

    Article  CAS  Google Scholar 

  35. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Excitons in atomically thin transition-metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

    Article  CAS  Google Scholar 

  36. Zhu, X. D.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Chen, L. R. Spectroscopic ellipsometry and its applications in the study of thin film materials. Chin. Opt. 2019, 12, 1195.

    Article  Google Scholar 

  37. Shi, Y. J.; Zhang, R. J.; Zheng, H.; Li, D. H.; Wei, W.; Chen, X.; Sun, Y.; Wei, Y. F.; Lu, H. L.; Dai, N. et al. Optical constants and band gap evolution with phase transition in sub-20-nm-thick TiO2 films prepared by ALD. Nanoscale Res. Lett. 2017, 12, 243.

    Article  Google Scholar 

  38. He, J. B.; Jiang, W.; Zhu, X. D.; Zhang, R. J.; Wang, J. L.; Zhu, M. P.; Wang, S. Y.; Zheng, Y. X.; Chen, L. Y. Optical properties of thickness-controlled PtSe2 thin films studied via spectroscopic ellipsometry. Phys. Chem. Chem. Phys. 2020, 22, 26383–26389.

    Article  CAS  Google Scholar 

  39. Zhu, X. D.; Li, D. H.; Zhang, R. J.; Zhang, H.; Cong, C. X.; Zhu, M. P.; Shi, Y. J.; Wu, Y.; Wang, S. Y.; Zheng, Y. X. et al. Probing quantum confinement effects on the excitonic property and electronic band structures of MoS2. Appl. Surf. Sci. 2020, 519, 146262.

    Article  CAS  Google Scholar 

  40. Shen, W. F.; Wei, Y. X.; Hu, C. G.; López-Posadas, C. B.; Hohage, M.; Sun, L. D. Substrate induced optical anisotropy in monolayer MoS2. J. Phys. Chem. C 2020, 124, 15468–15473.

    Article  CAS  Google Scholar 

  41. Yang, J. Y.; Zhang, W. J.; Liu, L. H. Anisotropic dielectric functions of (0001) sapphire from spectroscopic ellipsometry and first-principles study. Phys. B:Condens. Matter 2015, 473, 35–41.

    Article  CAS  Google Scholar 

  42. Li, D. H.; Zheng, H.; Wang, Z. Y.; Zhang, R. J.; Zhang, H.; Zheng, Y. X.; Wang, S. Y.; Zhang, D. W.; Chen, L. Y. Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness. Phys. Chem. Chem. Phys. 2017, 19, 12022–12031.

    Article  CAS  Google Scholar 

  43. Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H. et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453–459.

    Article  CAS  Google Scholar 

  44. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

    Article  Google Scholar 

  45. Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

    Article  CAS  Google Scholar 

  46. Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

    Article  CAS  Google Scholar 

  47. Mouri, S.; Zhang, W. J.; Kozawa, D.; Miyauchi, Y.; Eda, G.; Matsuda, K. Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 2017, 9, 6674–6679.

    Article  CAS  Google Scholar 

  48. Tran, M. D.; Kim, J. H.; Lee, Y. H. Tailoring photoluminescence of monolayer transition metal dichalcogenides. Curr. Appl. Phys. 2016, 16, 1159–1174.

    Article  Google Scholar 

  49. Grundmann, M., The Physics of Semiconductors; Springer: Berlin Heidelberg, 2006; pp 232–235.

    Google Scholar 

  50. Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

    Article  Google Scholar 

  51. Deilmann, T.; Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 2018, 18, 1460–1465.

    Article  CAS  Google Scholar 

  52. Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 2015, 15, 486–491.

    Article  CAS  Google Scholar 

  53. Heo, H.; Sung, J. H.; Cha, S.; Jang, B. G.; Kim, J. Y.; Jin, G.; Lee, D.; Ahn, J. H.; Lee, M. J.; Shim, J. H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372.

    Article  CAS  Google Scholar 

  54. Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

    Article  CAS  Google Scholar 

  55. Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

    Article  CAS  Google Scholar 

  56. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  CAS  Google Scholar 

  57. Li, L. H.; Santos, E. J. G.; Xing, T.; Cappelluti, E.; Roldán, R.; Chen, Y.; Watanabe, K.; Taniguchi, T. Dielectric screening in atomically thin boron nitride nanosheets. Nano Lett. 2015, 15, 218–223.

    Article  CAS  Google Scholar 

  58. Latini, S.; Olsen, T.; Thygesen, K. S. Excitons in van der Waals heterostructures: The important role of dielectric screening. Phys. Rev. B 2015, 92, 245123.

    Article  Google Scholar 

  59. Koo, J.; Gao, S. Y.; Lee, H.; Yang, L. Vertical dielectric screening of few-layer van der Waals semiconductors. Nanoscale 2017, 9, 14540–14547.

    Article  CAS  Google Scholar 

  60. Fujiwara, H., Spectroocopic Ellipsometry: Principles and Applications; John Wiley & Sons: New York, 2007.

    Book  Google Scholar 

  61. Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.

    Article  Google Scholar 

  62. Yu, P. Y.; Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties; 4th ed. Springer: Heidelberg, 2010; pp 788.

    Book  Google Scholar 

  63. Le, N. B.; Huan, T. D.; Woods, L. M. Interlayer interactions in van der Waals heterostructures: Electron and phonon properties. ACS Appl. Mater. Interfaces 2016, 8, 6286–6292.

    Article  CAS  Google Scholar 

  64. Wu, M. H.; Qian, X. F.; Li, J. Tunable exciton funnel using moiré superlattice in twisted van der Waals bilayer. Nano Lett. 2014, 14, 5350–5357.

    Article  CAS  Google Scholar 

  65. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    Article  CAS  Google Scholar 

  66. Sharma, A.; Harnish, P.; Sylvester, A.; Kotov, V. N.; Neto, A. H. C. Van der Waals forces and electron-electron interactions in two strained graphene layers. Phys. Rev. B 2014, 89, 235425.

    Article  Google Scholar 

  67. Li, D. H.; Song, X. F.; Xu, J. P.; Wang, Z. Y.; Zhang, R. J.; Zhou, P.; Zhang, H.; Huang, R. Z.; Wang, S. Y.; Zheng, Y. X. et al. Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry. Appl. Surf. Sci. 2017, 421, 884–890.

    Article  CAS  Google Scholar 

  68. Waldecker, L.; Raja, A.; Rösner, M.; Steinke, C.; Bostwick, A.; Koch, R. J.; Jozwiak, C.; Taniguchi, T.; Watanabe, K.; Rotenberg, E. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 2019, 123, 206403.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 11674062, 61775042, and 61774040), the Fudan University-CIOMP Joint Fund (Nos. FC2019-004, FC2019-006, and FC2018-002), the National Key R&D Program of China (No. 2018YFA0703700), the Shanghai Municipal Science and Technology Commission (No. 18JC1410300) and the Shanghai Municipal Natural Science Foundation (No. 20ZR1403200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongjun Zhang or Chunxiao Cong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., He, J., Zhang, R. et al. Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Res. 15, 2674–2681 (2022). https://doi.org/10.1007/s12274-021-3774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3774-4

Keywords

Navigation