Skip to main content
Log in

A Theoretical Study of Vibrational and Optical Properties of Isatin

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, density functional theory (DFT) calculations performed by using both non-periodic and periodic approaches have been employed to better understand the vibrational behavior of the N–H group, as well as some optical properties of isatin. The optimized molecular geometry and crystal structure obtained by using the isolated molecule, discrete water solvation, and solid-phase models are first presented. Then, starting from the optimized crystal structure obtained by using periodic boundary conditions, new calculations have been performed to predict the N–H stretching band position. These calculations show that the band previously observed experimentally at around 3445 cm−1 cannot be assigned to the N–H stretching mode. The origin of this band is attributed here to an external experimental factor due to the hygroscopicity of the sample. This explanation is supported by tracking the bands due to stretching and bending vibrations of water molecules in the calculated IR spectrum of isatin dimer-(H2O)3. Moreover, other DFT computations are carried out to predict some optical properties of the title compound like the dielectric function ε(ω), conductivity function σ(ω), refractive index n(ω), and extinction coefficient k(ω). Here, ε(ω), σ(ω), n(ω), and k(ω) are plotted for three different polarization directions of the incident electromagnetic wave: [100], [010], and [001]. The obtained results confirm the optical anisotropy character of isatin crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The programs used in this study are available from the corresponding author on reasonable request.

References

  1. W.C. Sumpter, Chem. Rev. 34, 393 (1944). https://doi.org/10.1021/cr60109a003

    Article  Google Scholar 

  2. S.N. Pandeya, S. Smitha, M. Jyoti, S.K. Sridhar, Acta Pharm 55, 27 (2005)

  3. V.B. Singh, A. Gupta, M.K. Singh, Journal of Molecular Structure. THEOCHEM 909, 6 (2009). https://doi.org/10.1016/j.theochem.2009.05.017

    Article  Google Scholar 

  4. B. Thirumalaiselvam, R. Kanagadurai, D. Jayaraman, V. Natarajan, Phys. B 427, 91 (2013). https://doi.org/10.1016/j.physb.2013.06.035

    Article  ADS  Google Scholar 

  5. E.G. Cox, T.H. Goodwin, A.I. Wagstaff, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 157, 399 (1936). https://doi.org/10.1098/rspa.1936.0203

    Article  Google Scholar 

  6. G.H. Goldschmidt, F.J. Llewellyn, Acta Crystallogr. A 3, 294 (1950). https://doi.org/10.1107/S0365110X50000756

    Article  Google Scholar 

  7. A. Bigotto, V. Galasso, Spectrochim. Acta, Part A 35, 725 (1979). https://doi.org/10.1016/0584-8539(79)80029-X

    Article  ADS  Google Scholar 

  8. A. D. Becke, J. Chem. Phys 98, 5648 (1993). https://doi.org/10.1063/1.464913

  9. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(2), 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

  10. L.J. He, Y. Sun, W. Li, J. Wang, M.X. Song, H.X. Zhang, Sol. Energy 173, 283 (2018). https://doi.org/10.1016/j.solener.2018.07.070

    Article  ADS  Google Scholar 

  11. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  12. P.R. Tulip, S.J. Clark, Phys. Rev. B 71(19), 195117 (2005). https://doi.org/10.1103/PhysRevB.71.195117

    Article  ADS  Google Scholar 

  13. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39(1), 1 (2014). https://doi.org/10.1080/10408436.2013.772503

    Article  ADS  Google Scholar 

  14. Q. Wu, W. Zhu, H. Xiao, RSC Adv. 4(95), 53149 (2014). https://doi.org/10.1039/C4RA09123J

    Article  ADS  Google Scholar 

  15. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005

    Article  ADS  Google Scholar 

  16. K. Refson, P.R. Tulip, S.J. Clark, Phys Rev B 73(15), 155114 (2006). https://doi.org/10.1103/PhysRevB.73.155114

    Article  ADS  Google Scholar 

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al. Gaussian 09, Revision A.01. Wallingford CT, (2009)

  18. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr 220, 567 (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  19. A. Boukaoud, Y. Chiba, M. Dehbaoui, N. Guechi, Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi 37(4), 1177 (2019)

  20. M. Fleck, A.M. Petrosyan, J. Cryst. Growth 312, 2284 (2010). https://doi.org/10.1016/j.jcrysgro.2010.04.054

    Article  ADS  Google Scholar 

  21. A.M. Petrosyan, Vib. Spectrosc. 43, 284 (2007). https://doi.org/10.1016/j.vibspec.2006.03.001

    Article  Google Scholar 

  22. J.B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, P. Roy, J. Chem. Phys. 122(18), 184509 (2005). https://doi.org/10.1063/1.1894929

    Article  ADS  Google Scholar 

  23. Q. Sun, Vib. Spectrosc. 51(2), 213 (2009). https://doi.org/10.1016/j.vibspec.2009.05.002

    Article  Google Scholar 

  24. F. Perakis, L. De Marco, A. Shalit, F. Tang, Z.R. Kann, T.D. Kühne, R. Torre, M. Bonn, Y. Nagata, Chem. Rev. 116(13), 7590 (2016). https://doi.org/10.1021/acs.chemrev.5b00640

    Article  Google Scholar 

  25. B.M. Auer, J.L. Skinner, J. Chem. Phys. 128(22), 224511 (2008). https://doi.org/10.1063/1.2925258

    Article  ADS  Google Scholar 

  26. Y. Watanabe, S. Maeda, K. Ohno, J. Chem. Phys. 129(7), 074315 (2008). https://doi.org/10.1063/1.2973605

    Article  ADS  Google Scholar 

  27. A. Benahmed, A. Bouhemadou, B. Alqarni, N. Guechi, Y. Al-Douri, R. Khenata, S. Bin-Omran, Phil. Mag. 98, 1217 (2018). https://doi.org/10.1080/14786435.2018.1425013

    Article  ADS  Google Scholar 

  28. A.R. Chaudhry, A. Irfan, S. Muhammad, A.G. Al-Sehemi, R. Ahmed, Z. Jingping, J. Mol. Graph. Model. 75, 355 (2017). https://doi.org/10.1016/j.jmgm.2017.05.012

    Article  Google Scholar 

  29. M.M. Makhlouf, H.A. Alburaih, M.M. Shehata, M.S.S. Adam, M.M. Mostafa, A. El-Denglawey, J. Phys. Chem. Solids 151, 109817 (2021). https://doi.org/10.1016/j.jpcs.2020.109817

    Article  Google Scholar 

  30. K. Liu, H. Fan, P. Ren, C. Yang, J. Alloy. Compd. 509, 1901 (2011). https://doi.org/10.1016/j.jallcom.2010.10.084

    Article  Google Scholar 

Download references

Funding

The MESRS provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelali Boukaoud.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 4229 KB)

Supplementary file2 (MP4 775 KB)

Supplementary file3 (MP4 605 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukaoud, A., Chiba, Y., Sebbar, D. et al. A Theoretical Study of Vibrational and Optical Properties of Isatin. Braz J Phys 51, 1207–1214 (2021). https://doi.org/10.1007/s13538-021-00924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00924-5

Keywords

Navigation