Skip to main content

Advertisement

Log in

Identification of apigenin-4’-glucoside as bacterial DNA gyrase inhibitor by QSAR modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure–activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4’-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson–Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4’-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4’-glucoside to confirm the antibacterial activity.

Methods

For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Upon reasonable request, the corresponding author will provide the information supporting the study’s findings.

References

  1. Barros RPC, da CEVL, Catão RMR et al (2018) Virtual screening of secondary metabolites of the genus Solanum with potential antimicrobial activity. Revista Brasileira de Farmacognosia 28:686–691. https://doi.org/10.1016/j.bjp.2018.08.003

    Article  CAS  Google Scholar 

  2. Frejat FOA, Cao Y, Zhai H et al (2022) Novel 1,2,4-oxadiazole/pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity. Arab J Chem 15:103538. https://doi.org/10.1016/j.arabjc.2021.103538

    Article  CAS  Google Scholar 

  3. Habboush Y, Guzman N. Antibiotic resistance. [Updated 2023 Mar 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK513277/

  4. Qureshi SI, Chaudhari HK (2019) Design, synthesis, in-silico studies and biological screening of quinazolinone analogues as potential antibacterial agents against MRSA. Bioorg Med Chem 27:2676–2688. https://doi.org/10.1016/j.bmc.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  5. Arévalo JMC, Amorim JC (2022) Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a] quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci Rep 12:4742. https://doi.org/10.1038/s41598-022-08359-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Ansari M, Al-Humaid LA, Vijayaraghavan P et al (2019) Identification of phytochemical components fromAerva lanata (Linn.) medicinal plants and its in-vitro inhibitory activity against drug resistant microbial pathogens and antioxidant properties. Saudi J Biol Sci 26:1129–1133. https://doi.org/10.1016/j.sjbs.2019.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De P, Bhayye S, Kumar V, Roy K (2022) In silico modeling for quick prediction of inhibitory activity against 3CLpro enzyme in SARS CoV diseases. J Biomol Struct Dyn 40:1010–1036. https://doi.org/10.1080/07391102.2020.1821779

    Article  CAS  PubMed  Google Scholar 

  8. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  9. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP et al (2018) IMPPAT: a curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci Rep 8:4329. https://doi.org/10.1038/s41598-018-22631-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242 http://www.rcsb.org/pdb/status.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cabral JHM, Jackson AP, Smith CV et al (1997) Crystal structure of the breakage-reunion domain of DNA gyrase. Lett Nat 388:903–906. https://doi.org/10.1038/42294

    Article  Google Scholar 

  12. Forli S, Huey R, Pique ME et al (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919. https://doi.org/10.1038/nprot.2016.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  15. Mangal P, Jha RK, Jain M, Singh AK, Muthukumaran J (2023) Identification and prioritization of promising lead molecules from Syzygium aromaticum against Sortase C from Streptococcus pyogenes: an in silico investigation. J Biomol Struct Dyn 41:5418–5435. https://doi.org/10.1080/07391102.2022.2086921

    Article  CAS  PubMed  Google Scholar 

  16. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

    Article  CAS  PubMed  Google Scholar 

  17. Kavitha K, Sivakumar S, Ramesh B (2020) 1,2,4 triazolo[1,5-a] pyrimidin-7-ones as novel SARS-CoV-2 main protease inhibitors: in silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Biophys Chem 267:106478. https://doi.org/10.1016/j.bpc.2020.106478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiong G, Wu Z, Yi J et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  21. Allouche AR (2011) Gabedita - a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  22. Li M, Reimers JR, Ford MJ et al (2021) Accurate prediction of the properties of materials using the CAM-B3LYP density functional. J Comput Chem 42:1486–1497. https://doi.org/10.1002/jcc.26558

    Article  CAS  PubMed  Google Scholar 

  23. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  24. Knizia G (2013) Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J Chem Theory Comput 9:4834–4843. https://doi.org/10.1021/ct400687b

    Article  CAS  PubMed  Google Scholar 

  25. Hsu KC, Chen YF, Lin SR, Yang JM (2011) Igemdock: a graphical environment of enhancing gemdock using pharmacological interactions and post-screening analysis. BMC Bioinformatics 12:S33. https://doi.org/10.1186/1471-2105-12-S1-S33

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khan T, Lawrence AJ, Azad I, Raza S, Khan AR (2018) Molecular docking simulation with special reference to flexible docking approach. JSM Chem 6:1053

    Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  28. BIOVIA (2020) Dassault Systèmes, Discovery Studio Visualizer. San Diego, Dassault Systèmes

    Google Scholar 

  29. Lemkul J (2019) From proteins to perturbed Hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living J Comput Mol Sci 1:5068. https://doi.org/10.33011/livecoms.1.1.5068

    Article  Google Scholar 

  30. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  31. Haug EJ, Arora JS, Matsui k (1976) A steepest-descent method for optimization of mechanical systems. J Optim Theory Appl 19:401-424. https://doi.org/10.1007/BF00941484

  32. Bera K (2022) Binding and inhibitory effect of ravidasvir on 3CLpro of SARS-CoV-2: a molecular docking, molecular dynamics and MM/PBSA approach. J Biomol Struct Dyn 40:7303–7310. https://doi.org/10.1080/07391102.2021.1896388

    Article  CAS  PubMed  Google Scholar 

  33. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16:273–284

    Article  CAS  Google Scholar 

  34. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angewandte Chemie 38:236–240

    Article  CAS  Google Scholar 

  35. Tresanco VMS, Tresanco VME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/acs.jctc.1c00645.

  36. Case DA, Aktulga HM, Belfon k et al (2023) Amber 2023. University of California, San Francisco

    Google Scholar 

  37. Sharma T, Baig MH, Khan MI et al (2022) Computational screening of camostat and related compounds against human TMPRSS2: a potential treatment of COVID-19. Saudi Pharm J 30:217–224. https://doi.org/10.1016/j.jsps.2022.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 12:1–10. https://doi.org/10.4103/jpbs.JPBS_175_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  40. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324. https://doi.org/10.1016/j.ymeth.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abdullahi M, Adeniji SE, Arthur DE, Musa S (2020) Quantitative structure-activity relationship (QSAR) modelling study of some novel carboxamide series as new anti-tubercular agents. Bull Natl Res Cent 44:136. https://doi.org/10.1186/s42269-020-00389-7

    Article  Google Scholar 

  42. Adeniji SE, Adalumo OB, Ekoja FO (2020) Anti-tubercular modelling, molecular docking simulation and insight toward computational design of novel compounds as potent antagonist against DNA gyrase receptor. Med Microecology 5:100020. https://doi.org/10.1016/j.medmic.2020.100020

    Article  Google Scholar 

  43. Moreau G, Broto P (1980) The autocorrelation of a topological structure: a new molecular descriptor. Nouv J chim 4:359–360. https://doi.org/10.1023/A:1023247831238

    Article  CAS  Google Scholar 

  44. Moran PAP (1950) Notes on continuous stochastic phenomena. In: Biometrika, Oxford University Press, United Kingdom, 37:17–23. https://doi.org/10.2307/2332142.

  45. Geary RC (1954) The contiguity ratio and statistical mapping. The Incorporated Statistician, vol 5. 3rd edn. Wiley, New York, pp 115–145. https://doi.org/10.2307/2986645

    Chapter  Google Scholar 

  46. Pavone LM, Del Vecchio P, Mallardo P et al (2013) Electronic supplementary information (ESI) for molecular BioSystems structural characterization and biological properties of human gastrokine 1. Mol BioSyst 9:412–421. https://doi.org/10.1039/C2MB25308A

    Article  CAS  PubMed  Google Scholar 

  47. Hasan MR, Chowdhury SM, Aziz MA et al (2021) In silico analysis of ciprofloxacin analogs as inhibitors of DNA gyrase of Staphylococcus aureus. Inform Med Unlocked 26:1000748. https://doi.org/10.1016/j.imu.2021.100748

    Article  Google Scholar 

  48. Moulishankar A, Lakshmanan K (2020) Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief 29:105243. https://doi.org/10.1016/j.dib.2020.105243

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  50. Brenk R, Schipani A, James D et al (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3:435–444. https://doi.org/10.1002/cmdc.200700139

    Article  CAS  PubMed  Google Scholar 

  51. Miar M, Shiroudi A, Pourshamsian K et al (2021) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: solvent and substituent effects. J Chem Res 45:147–158. https://doi.org/10.1177/1747519820932091

    Article  CAS  Google Scholar 

  52. Zheng C, Rubel O (2017) Ionization energy as a stability criterion for halide perovskites. J Phys Chem C 121:11977–11984. https://doi.org/10.1021/acs.jpcc.7b00333

    Article  CAS  Google Scholar 

  53. Boroujeni MB, Dastjerdeh MS, Shokrgozar M et al (2021) Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions. Inform Med Unlocked 23:100514. https://doi.org/10.1016/j.imu.2021.100514

    Article  Google Scholar 

  54. Cong Y, Duan L, Huang K et al (2021) Alanine scanning combined with interaction entropy studying the differences of binding mechanism on HIV-1 and HIV-2 proteases with inhibitor. J Biomol Struct Dyn 39:1588–1599. https://doi.org/10.1080/07391102.2020.1734488

    Article  CAS  PubMed  Google Scholar 

  55. Süzgeç-Selçuk S, Birteksöz AS (2011) Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S Afr J Bot 77:170–174. https://doi.org/10.1016/j.sajb.2010.07.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. V. B. Hrishikesan, Secretary, Sri Sankara Arts and Science College, Enathur, Kanchipuram, for providing valuable thoughts regarding the herbal plants and to the Principal Dr. K. R. Venkatesan, and the Management of Sri Sankara Arts and Science College, Enathur, Kanchipuram, for providing research facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

Manoharan Harini contributed to the literature search, performing experiments, and drafting the original version of the manuscript. Kuppuswamy Kavitha and Arumugam Rajalakshmi contributed to reviewing of manuscript and performing in silico molecular dynamic work. Vadivel Prabakaran contributed to sample collection and performing experimental work. Anandan Krithika and Shanmugam Dinesh contributed to performing in vitro experimental work and data collection. Gopal Suresh and Rengarajulu Puvanakrishnan contributed to the statistical analysis of the work and critical evaluation of the manuscript. Balasubramanian Ramesh was involved in the planning, supervision, and validation of the work and verification of the manuscript. All the authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Balasubramanian Ramesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 89 kb)

ESM 2

(PDF 1280 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harini, M., Kavitha, K., Prabakaran, V. et al. Identification of apigenin-4’-glucoside as bacterial DNA gyrase inhibitor by QSAR modeling, molecular docking, DFT, molecular dynamics, and in vitro confirmation studies. J Mol Model 30, 22 (2024). https://doi.org/10.1007/s00894-023-05813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05813-z

Keywords

Navigation