Skip to main content
Log in

Quasi-planar Co atom-doped boron cluster: CoB192−

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Purpose and Methods

A global search for the lowest energy structure of CoB192− clusters was conducted. 

Results

Its ground state is a quasi-planar structure with the Co atom surrounded by a B8 ring. The central Co atom has an oxidation state of +1 with d8 electron configuration. The wave function analysis showed that the Co–B interaction is not a covalent bond. The bonding strength of peripheral B–B bonds is stronger than that of inner ones. The inner B8 ring bonds with outer boron atoms via σ- and π-type bonds.

Conclusion

CoB192− shows remarkable aromatic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

My manuscript has no availability of data and material.

Code availability

My manuscript has no application of code availability.

References

  1. Lipscomb WN (1977) Science 196:1047–1055

    Article  CAS  Google Scholar 

  2. Albert B, Hillebrecht H (2009) Angew Chem Int Ed 48, 8640 –8668; (2009) Angew Chem 121:8794–8824

  3. Bai H, Chen TT, Chen Q, Zhao XY, Zhang YY, Chen WJ, Li WL, Cheung LF, Bai B, Cavanagh J, Huang W, Li SD, Li J, Wang LS (2019) Nanoscale 11:23286–23295

    Article  CAS  Google Scholar 

  4. Boldyrev AI, Wang LS (2016) Phys Chem Chem Phys 18:11589–11605

    Article  CAS  Google Scholar 

  5. Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI (2014) Acc Chem Res 47:1349–1358

    Article  CAS  Google Scholar 

  6. Piazza ZA, Popov IA, Li WL, Pal R, Zeng XC, Boldyrev AI, Wang LS (2014) J Chem Phys 141:034303

    Article  Google Scholar 

  7. Popov IA, Piazza ZA, Li WL, Wang LS, Boldyrev AI (2013) J Chem Phys 139:144307

    Article  Google Scholar 

  8. Sergeeva AP, Piazza ZA, Romanescu C, Li WL, Boldyrev AI, Wang LS (2012) J Am Chem Soc 134:18065–18073

    Article  CAS  Google Scholar 

  9. Piazza ZA, Li WL, Romanescu C, Sergeeva AP, Wang LS, Boldyrev AI (2012) J Chem Phys 136:104310

    Article  Google Scholar 

  10. Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nature Chem 2:202–206

    Article  Google Scholar 

  11. Chen Q, Tian WJ, Feng LY, Lu HG, Mu YW, Zhai HJ, Li SD, Wang LS (2017) Nanoscale 9:4550–4557

    Article  CAS  Google Scholar 

  12. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Nat Commun 5:3113

    Article  Google Scholar 

  13. Li WL, Chen Q, Tian WJ, Bai H, Zhao YF, Hu HS, Li J, Zhai HJ, Li SD, Wang LS (2014) J Am Chem Soc 136:12257–12260

    Article  CAS  Google Scholar 

  14. Li WL, Zhao YF, Hu HS, Li J, Wang LS (2014) Angew Chem 126:5646–5651

    Article  Google Scholar 

  15. Luo XM, Jian T, Cheng LJ, Li WL, Chen Q, Li R, Zhai HJ, Li SD, Boldyrev AI, Li J, Wang LS (2017) Chem Phys Lett 683:336–341

    Article  CAS  Google Scholar 

  16. Chen Q, Li WL, Zhao XY, Li HR, Feng LY, Zhai HJ, Li SD, Wang LS (2017) Eur J Inorg Chem 38–39:4546–4551

    Article  Google Scholar 

  17. Pham HT, Muya JT, Buendía F, Ceulemans A, Nguyen MT (2019) Phys Chem Chem Phys 21:7039–7044

    Article  CAS  Google Scholar 

  18. Sai LW, Wu X, Gao N, Zhao JJ, King RB (2017) Nanoscale 9:13905–13909

    Article  CAS  Google Scholar 

  19. Li R, You XR, Guo JC, Zhai HJ (2021) J Phys Chem A 125:5022–5030

    Article  CAS  Google Scholar 

  20. Mannix AJ et al (2015) Science 350:1513–1516

    Article  CAS  Google Scholar 

  21. Feng B, Zhang J, Zhong Q, Li WB, Li S, Li H, Cheng P, Meng S, Chen L, Wu KH (2016) Nat Chem 8:563–568

    Article  CAS  Google Scholar 

  22. Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2011) Angew Chem Int Ed 50:9334–9337

    Article  CAS  Google Scholar 

  23. Li WL, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang LS (2012) J Am Chem Soc 134:165–168

    Article  CAS  Google Scholar 

  24. Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI (2012) Angew Chem Int Ed 51:2101–2105

    Article  CAS  Google Scholar 

  25. Romanescu C, Galeev TR, Sergeeva AP, Li WL, Wang LS, Boldyrev AI (2012) J Organomet Chem 721–722:148–154

    Article  Google Scholar 

  26. Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2013) Acc Chem Res 46:350–358

    Article  CAS  Google Scholar 

  27. Heine T, Merino G (2012) Angew Chem Int Ed 51:4275–4276

    Article  CAS  Google Scholar 

  28. Yu R, Pan S, Cui ZH (2021) Front Chem 9:751482

    Article  CAS  Google Scholar 

  29. Li WL, Chen TT, Xing DH, Chen X, Li J, Wang LS (2018) Proc Natl Acad Sci 115:E6972-6977

    CAS  Google Scholar 

  30. Chen TT, Li WL, Li J, Wang LS (2019) Chem Sci 10:2534–2542

    Article  CAS  Google Scholar 

  31. Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS (2015) Nat Commun 6:8654

    Article  CAS  Google Scholar 

  32. Jian T, Li WL, Popov IA, Lopez GV, Chen X, Boldyrev AI, Li J, Wang LS (2016) J Chem Phys 144:154310

    Article  Google Scholar 

  33. Li WL, Jian T, Chen X, Li HR, Chen TT, Luo XM, Li SD, Li J, Wang LS (2017) Chem Commun 53:1587–1590

    Article  CAS  Google Scholar 

  34. Li HR, Liu H, Tian XX, Zan WY, Mu YW, Lu HG, Li J, Wang YK, Li SD (2017) Phys Chem Chem Phys 19:27025–27030

    Article  CAS  Google Scholar 

  35. Zhao L, Qu X, Wang Y, Lv J, Zhang L, Hu Z, Gu G, Ma Y (2017) J Phys: Condens Matter 29:265401

    Google Scholar 

  36. Shao X, Qu X, Liu S, Yang L, Yang J, Liu X, Zhong X, Sun S, Vaitheeswarang G, Lv J (2019) RSC Adv 9:2870–2876

    Article  CAS  Google Scholar 

  37. Li HR, Liu H, Lu XQ, Zan WY, Tian XX, Lu HG, Wu YB, Mu YW, Li SD (2018) Nanoscale 10:7451–7456

    Article  CAS  Google Scholar 

  38. Xu C, Cheng LJ, Yang JL (2014) J Chem Phys 141:124301

    Article  Google Scholar 

  39. Wang J, Zhang NX, Wang CZ, Wu QY, Lan JH, Chai ZF, Nie CM, Shi WQ (2021) Phys Chem Chem Phys 23:26967–26973

    Article  CAS  Google Scholar 

  40. Chen BL, Sun WG, Kuang XY, Lu C, Xia XX, Shi HX, Maroulis G (2018) Inorg Chem 57:343–350

    Article  Google Scholar 

  41. Li PF, Du XD, Wang JJ, Lu C, Chen HH (2018) J Phys Chem C 122:20000–20005

    Article  CAS  Google Scholar 

  42. Ren MX, Jin SY, Wei DH, Jin YY, Tian YH, Lu C, Gutsev GL (2019) Phys Chem Chem Phys 21:21746–21752

    Article  CAS  Google Scholar 

  43. Chen BL, Sun WG, Kuang XY, Lu C, Xia XX, Shi HX, Gutsev GL (2018) Phys Chem Chem Phys 20:30376–30383

    Article  CAS  Google Scholar 

  44. Li WL, Jian T, Chen X, Chen TT, Lopez GV, Li J, Wang LS (2016) Angew Chem Int Ed 55:7358–7363

    Article  CAS  Google Scholar 

  45. Jian T, Li WL, Chen X, Chen TT, Lopez GV, Li J, Wang LS (2016) Chem Sci 7:7020–7027

    Article  CAS  Google Scholar 

  46. Lu T Molclus program, Version 1.9. http://www.keinsci.com/research/molclus.html. Accessed on 5 Nov 2019

  47. Stewart JJP (2016) MOPAC2016, Stewart Computational Chemistry, Colorado Springs. http://OpenMOPAC.net

  48. Zhao J, Shi R, Sai L, Huang X, Su Y (2016) Mol Simulat 42:809–819

    Article  CAS  Google Scholar 

  49. Tai TB, Tam NM, Nguyen MT (2012) Chem Phys Lett 530:71–76

    Article  CAS  Google Scholar 

  50. Kiran B, Bulusu S, Zhai HJ, Yoo S, Zeng XC, Wang LS (2005) Proc Natl Acad Sci 102:961–964

    Article  CAS  Google Scholar 

  51. Tai TB, Ceulemans A, Nguyen MT (2012) Chem Eur J 18:4510–4512

  52. Tai TB, Tam NM, Nguyen MT (2012) Theor Chem Acc 131:1241

    Article  Google Scholar 

  53. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  54. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  55. Frisch MJ et al (2009) Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT

  56. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Anhui Province (No. 1908085MA12) and the National Natural Science Foundation of China (No. U21A20317).

Author information

Authors and Affiliations

Authors

Contributions

Q. L. Lu conceptualized the problem and wrote the manuscript. X. D. Liu and C. R. Wang conducted the calculation procedure and analyzed the results. Q. Q. Luo performed the calculations.

Corresponding author

Correspondence to Qi Liang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7565 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q.L., Liu, X.D., Luo, Q.Q. et al. Quasi-planar Co atom-doped boron cluster: CoB192−. J Mol Model 29, 7 (2023). https://doi.org/10.1007/s00894-022-05404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05404-4

Keywords

Navigation