Skip to main content
Log in

Nanoindentation characteristics of nanocrystalline B2 CuZr shape memory alloy via large-scale atomistic simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nanoindentation tests are performed by molecular dynamics simulation to explore the mechanical properties of nanocrystalline B2 CuZr shape memory alloys with average grain sizes ranging from 6 to 18 nm. Some paramount aspects are monitored, including indentation force-depth curve, hardness, yield strength, and elastic recovery. The results demonstrate an inverse Hall–Petch effect, i.e., the hardness decreases with the decrease in grain size. For the single crystalline B2 CuZr, dislocation nucleation and propagation are the major plastic mechanisms. However, grain cleavage, grain boundary compression, and grain rotation prevail over the plastic behaviors of nanocrystalline B2 CuZr alloys. The elastic recovery becomes stronger with the increase in grain size. Besides, the effects of temperature, indenter size, and indenter speed on the nanoindentation responses are evaluated quantitively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang YQ, Jiang SY, Wang M (2020) Atomistic investigation on superelasticity of NiTi shape memory alloy with complex microstructures based on molecular dynamics simulation. Int J Plast 125:27–51

    Article  CAS  Google Scholar 

  2. Xu B, Kang GZ, Yu C, Kan QH (2020) Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline NiTi shape memory alloys. Int J Eng Sci 156:103373

    Article  CAS  Google Scholar 

  3. Chen X, Chen W, Ma Y, Zhao Y, Deng CY, Peng XH, Fu T (2020) Tension-Compression asymmetry of single-crystalline and nanocrystalline NiTi shape memory alloy: an atomic scale study. Mech Mater 145:103402

    Article  Google Scholar 

  4. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Design (1980–2015) 56:1078–1113

  5. Zhang C, Ding F, Hor PH, Dai XX (1996) Theory of the measurement of resistivity of superconductors and its dual integral equations. Phys Lett A 221(3–4):239–244

    Article  CAS  Google Scholar 

  6. Angioni SL, Meo M, Foreman A (2011) Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites-a review. Smart Mater Struct 20(1):013001

    Article  Google Scholar 

  7. Mao SC, Luo JF, Zhang Z, Wu MH, Liu Y, Han XD (2010) EBSD studies of the stress-induced B2–B19’ martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Mater 58(9):3357–3366

    Article  CAS  Google Scholar 

  8. Mao SC, Han XD, Tian YB, Luo JF, Zhang Z, Ji Y, Wu MH (2008) In situ EBSD investigations of the asymmetric stress-induced martensitic transformation in TiNi shape memory alloys under bending. Mater Sci Eng a-Structural Mater Prop Microstruct Process 498(1–2):278–282

    Article  Google Scholar 

  9. Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52(1):137–147

    Article  CAS  Google Scholar 

  10. Waitz T, Antretter T, Fischer FD, Karnthaler HP (2008) Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater Sci Technol 24(8):934–940

    Article  CAS  Google Scholar 

  11. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast 27(2):282–297

    Article  CAS  Google Scholar 

  12. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2010) Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater 58(13):4503–4515

    Article  CAS  Google Scholar 

  13. Koval YN, Firstov GS, Kotko AV (1992) Martensitic-transformation and shape memory effect in ZrCu intermetallic compound. Scr Metall Mater 27(11):1611–1616

    Article  CAS  Google Scholar 

  14. Pauly S, Liu G, Wang G, Kuhn U, Mattern N, Eckert J (2009) Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Materialia 57(18):5445–5453

  15. Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102(24):245501

    Article  CAS  PubMed  Google Scholar 

  16. Cheng Q, Wu HA, Wang Y, Wang XX (2009) Pseudoelasticity of Cu–Zr nanowires via stress-induced martensitic phase transformations. Appl Phys Lett 95(2):021911

    Article  Google Scholar 

  17. Sutrakar VK, Mahapatra DR (2009) Stress-induced martensitic phase transformation in Cu-Zr nanowires. Mater Lett 63(15):1289–1292

    Article  CAS  Google Scholar 

  18. Amigo N (2019) Martensitic transformation induced by void defects in the B2-CuZr crystal structure: an atomistic analysis. Mol Simul 45(12):951–957

    Article  CAS  Google Scholar 

  19. Weng S, Fu T, Peng X, Chen X (2019) Anisotropic phase transformation in B2 crystalline CuZr alloy. Nanoscale Res Lett 14(1):283

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang YH, Xu JF, Hu YQ, Li JJ, Ding SH, Xia R (2022) Dynamic mechanical behaviors of metallic glass-shape memory alloy bilayered nanocomposite under shock wave compression. J Non-Cryst Solids 581:121419

    Article  CAS  Google Scholar 

  21. Amigo N, Sepulveda-Macias M, Gutierrez G (2017) Martensitic transformation to monoclinic phase in bulk B2-CuZr. Intermetallics 91:16–21

    Article  CAS  Google Scholar 

  22. Wang XY, Feng SD, Qi L, Gao W, Zhang SL (2021) Mechanical properties of Cu50Zr50 amorphous/B2-CuZr crystalline composites studied by molecular dynamic method. J Non-Cryst Solids 568:120942

    Article  CAS  Google Scholar 

  23. Sepulveda-Macias M, Amigo N, Gutierrez G (2018) Tensile behavior of Cu 50 Zr 50 metallic glass nanowire with a B2 crystalline precipitate. Physica B 531:64–69

    Article  CAS  Google Scholar 

  24. Cui X, Zu FQ, Wang ZZ, Huang ZY, Li XY, Wang LF (2013) Study of the reversible intermetallic phase: B2-type CuZr. Intermetallics 36:21–24

    Article  CAS  Google Scholar 

  25. Sutrakar VK, Mahapatra DR (2009) Comment on Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations. Appl Phys Lett 95(13):136101

  26. Liu SY, Dhiman A, Shin YC, Tomar V, Zhang ST (2019) In-situ synthesis of Zr-based bulk metallic glass composites with periodic amorphous-crystalline microstructure for improved ductility via laser direct deposition. Intermetallics 111:106503

    Article  CAS  Google Scholar 

  27. Cheng Q, Wu HA, Wang Y, Wang XX (2009) Response to “Comment on ‘Pseudoelasticity of Cu-Zr nanowires via stress-induced Martensitic phase transformations’”. Appl Phys Lett 95(13):136102

  28. Pan ZL, Li YL, Wei Q (2008) Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Mater 56(14):3470–3480

    Article  CAS  Google Scholar 

  29. Fang TH, Huang CC, Chiang TC (2016) Effects of grain size and temperature on mechanical response of nanocrystalline copper. Mater Sci Eng a-Structural Mater Prop Microstruct Process 671:1–6

    Article  CAS  Google Scholar 

  30. Li JJ, Lu BB, Zhang YH, Zhou HJ, Hu GM, Xia R (2020) Nanoindentation response of nanocrystalline copper via molecular dynamics: grain-size effect. Mater Chem Phys 241:122391

    Article  CAS  Google Scholar 

  31. Li JJ, Lu BB, Zhou HJ, Tian CY, Xian YH, Hu GM, Xia R (2019) Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: grain-size and temperature effects. Phys Lett A 383(16):1922–1928

    Article  CAS  Google Scholar 

  32. Hahn EN, Meyers MA (2015) Grain-size dependent mechanical behavior of nanocrystalline metals. Mater Sci Eng a-Structural Mater Prop Microstruct Process 646:101–134

    Article  CAS  Google Scholar 

  33. Zhang YH, Li JJ, Hu YQ, Ding SH, Du FY, Xia R (2021) Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J Appl Phys 130(15):155106

    Article  CAS  Google Scholar 

  34. Amigo N, Sepulveda-Macias M, Gutierrez G (2019) Enhancement of mechanical properties of metallic glass nanolaminates via martensitic transformation: atomistic deformation mechanism. Mater Chem Phys 225:159–168

    Article  CAS  Google Scholar 

  35. Pan CL, Zhang LM, Jiang WL, Setyawan W, Chen L, Li ZM, Liu N, Wang TS (2020) Grain size dependence of hardness in nanocrystalline silicon carbide. J Eur Ceram Soc 40(13):4396–4402

    Article  CAS  Google Scholar 

  36. Nawaz A, Mao WG, Lu C, Shen YG (2017) Nano-scale elastic-plastic properties and indentation-induced deformation of amorphous silicon carbide thin film. Ceram Int 43(1):385–391

    Article  CAS  Google Scholar 

  37. Rupert TJ (2013) Strain localization in a nanocrystalline metal: atomic mechanisms and the effect of testing conditions. J Appl Phys 114(3):033527

    Article  Google Scholar 

  38. Li J, Guo JW, Luo H, Fang QH, Wu H, Zhang LC, Liu YW (2016) Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364:190–200

    Article  CAS  Google Scholar 

  39. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  40. Borovikov V, Mendelev MI, King AH (2016) Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals. Modell Simul Mater Sci Eng 24(8):085017

    Article  Google Scholar 

  41. Lyu GJ, Qiao JC, Yao Y, Wang YJ, Morthomas J, Fusco C, Rodney D (2021) Microstructural effects on the dynamical relaxation of glasses and glass composites: a molecular dynamics study. Acta Mater 220:117293

    Article  CAS  Google Scholar 

  42. Yuan X, Sopu D, Moitzi F, Song KK, Eckert J (2020) Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses. J Appl Phys 128(12):125102

    Article  CAS  Google Scholar 

  43. Wang P, Yang XH (2020) Atomistic investigation of aging and rejuvenation in CuZr metallic glass under cyclic loading. Comput Mater Sci 185:109965

    Article  CAS  Google Scholar 

  44. Ray A, Srivastava MK, Kondayya G, Menon SVG (2006) Improved equation of state of metals in the liquid-vapor region. Laser Part Beams 24(3):437–445

    Article  CAS  Google Scholar 

  45. Kim JH, Kim YH (2002) Three-node macro triangular shell element based on the assumed natural strains. Comput Mech 29(6):441–458

    Article  Google Scholar 

  46. Păduraru A, Andersen UG, Thyssen A, Bailey NP, Jacobsen KW, Schiøtz J (2010) Computer simulations of nanoindentation in Mg–Cu and Cu–Zr metallic glasses. Modell Simul Mater Sci Eng 18(5):055006

    Article  Google Scholar 

  47. Zhao D, Zhu B, Wang SB, Niu YH, Xu LX, Zhao HW (2021) Effects of pre-strain on the nanoindentation behaviors of metallic glass studied by molecular dynamics simulations. Comput Mater Sci 186:110073

    Article  CAS  Google Scholar 

  48. Hua DP, Ye WT, Jia Q, Zhou Q, Xia QS, Shi JQ, Deng YY, Wang HF (2020) Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Appl Surf Sci 511:145545

    Article  CAS  Google Scholar 

  49. Qiu C, Zhu PZ, Fang FZ, Yuan DD, Shen XC (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101–110

    Article  CAS  Google Scholar 

  50. Zhao D, Zhao HW, Zhu B, Wang SB (2017) Investigation on hardening behavior of metallic glass under cyclic indentation loading via molecular dynamics simulation. Appl Surf Sci 416:14–23

    Article  CAS  Google Scholar 

  51. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  52. Qiu YH, Qi YM, Zheng HY, He TW, Feng ML (2021) Atomistic simulation of nanoindentation response of dual-phase nanocrystalline CoCrFeMnNi high-entropy alloy. J Appl Phys 130(12):125102

    Article  CAS  Google Scholar 

  53. Mishra DK, Meraj M, Badjena SK, Pal S (2019) Structural evolution and dislocation behaviour study during nanoindentation of Mo20W20Co20Ta20Zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation. Mol Simul 45(7):572–584

    Article  CAS  Google Scholar 

  54. Zhang YH, An Q, Li JJ, Lu BB, Wu WW, Xia R (2020) Strengthening mechanisms of graphene in copper matrix nanocomposites: a molecular dynamics study. J Mol Model 26(12):335

    Article  CAS  PubMed  Google Scholar 

  55. Tran AS, Fang TH (2020) Effects of grain size and indentation sensitivity on deformation mechanism of nanocrystalline tantalum. Int J Refract Metal Hard Mater 92:105304

    Article  CAS  Google Scholar 

  56. Pham VT, Fang TH (2021) Influences of grain size, alloy composition, and temperature on mechanical characteristics of Si100-xGex alloys during indentation process. Mater Sci Semicond Process 123:105568

    Article  CAS  Google Scholar 

  57. Singer EA, Hertz H, Jones DE, Walley JT (1900) The principles of mechanics. The Philosophical Review 9(6):676–678

    Article  Google Scholar 

  58. Tian Y, Fang Q, Li J (2020) Molecular dynamics simulations for nanoindentation response of nanotwinned FeNiCrCoCu high entropy alloy. Nanotechnology 31(46):465701

    Article  CAS  PubMed  Google Scholar 

  59. Patil SP, Parale VG, Park HH, Markert B (2019) Molecular dynamics and experimental studies of nanoindentation on nanoporous silica aerogels. Mater Sci Eng a-Structural Mater Prop Microstruct Process 742:344–352

    Article  CAS  Google Scholar 

  60. Chang SW, Nair AK, Buehler MJ (2013) Nanoindentation study of size effects in nickel-graphene nanocomposites. Philos Mag Lett 93(4):196–203

    Article  CAS  Google Scholar 

  61. Liu XM, Yuan FP, Wei YG (2013) Grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Appl Surf Sci 279:159–166

    Article  CAS  Google Scholar 

  62. Hu J, Shi YN, Sauvage X, Sha G, Lu K (2017) Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355(6331):1292–1296

    Article  CAS  PubMed  Google Scholar 

  63. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng 20(4):045021

    Article  Google Scholar 

  64. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

Download references

Funding

The work is financially supported by the National Natural Science Foundation of China under the grant of 12072241 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Yuhang Zhang: data curation; formal analysis; Investigation; writing — original draft; conceptualization; visualization; writing — review and editing. Jianfei Xu: writing — review and editing. Yiqun Hu: writing — review and editing. Jiejie Li: writing — review and editing; funding acquisition. Suhang Ding: software. Re Xia: funding acquisition; project administration; software; resources; conceptualization.

Corresponding author

Correspondence to Re Xia.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, J., Hu, Y. et al. Nanoindentation characteristics of nanocrystalline B2 CuZr shape memory alloy via large-scale atomistic simulation. J Mol Model 28, 317 (2022). https://doi.org/10.1007/s00894-022-05320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05320-7

Keywords

Navigation