Skip to main content
Log in

Strengthening mechanisms of graphene in copper matrix nanocomposites: A molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To clarify the strengthening mechanism of coated/embedded graphene in metal matrix nanocomposites, nanoindentation responses of graphene-coated/embedded copper nanocomposites are investigated using molecular dynamics simulations, with the consideration of indentation force–displacement relation, stress distribution, evolution of microstructure and dislocation, and elastic recovery. Results show that two mechanisms, graphene layer bearing surface tensile stress disperses the contact stress and blocks the propagation of dislocations, contribute to the enhanced hardness and improved load bearing capacity, but one is often dominant for different nanocomposites. The former dominates in graphene-coated structure while the latter dominates in graphene-embedded structure, and the reinforcement is more obvious in the coated structure. The graphene delays the plastic deformation of matrix, and its elastic recovery is boosted due to the stress homogenization effect. The embedded graphene promotes the stress concentration and accelerates the plastic deformation of up Cu film, weakening its width elastic recovery. The observations will provide a practical guide for the mechanical optimization and design of metal–graphene nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao X, Shen Y, Ma Y, Wu S, Zhou Z (2019) Graphene/GeTe van der Waals heterostructure: functional Schottky device with modulated Schottky barriers via external strain and electric field. Comput Mater Sci 170:109200

    CAS  Google Scholar 

  2. Zhang HF, Wu DP, Ning XJ (2019) Atomistic mechanism for graphene based gaseous sensor working. Appl Surf Sci 470:448–453

    CAS  Google Scholar 

  3. Lan ZQ, Zeng L, Jiong G, Huang XT, Liu HZ, Hua N, Guo J (2019) Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. Int J Hydrogen Energ 44(45):24849–24855

    CAS  Google Scholar 

  4. Gao X, Yue HY, Guo EJ, Zhang H, Lin XY, Yao LH, Wang B (2016) Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Design 94:54–60

    CAS  Google Scholar 

  5. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  PubMed  Google Scholar 

  6. Schriver M, Regan W, Gannett WJ, Zaniewski AM, Crommie MF, Zettl A (2013) Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7):5763–5768

    CAS  PubMed  Google Scholar 

  7. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  PubMed  Google Scholar 

  8. Haghighi S, Ansari R, Ajori S (2020) A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des 16(2):387–400

    CAS  Google Scholar 

  9. Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattice Microst 51(2):274–289

    CAS  Google Scholar 

  10. Ansari R, Ajori S, Malakpour S (2016) Prediction of structural and mechanical properties of atom-decorated porous graphene via density functional calculations. Eur Phys J Appl Phys 74(1):10401

    Google Scholar 

  11. Mokhalingam A, Kumar D, Srivastava A (2017) Mechanical behaviour of graphene reinforced aluminum nano composites. Mater Today 4(2, Part A):3952–3958

    Google Scholar 

  12. Rezaei R, Deng C, Tavakoli-Anbaran H, Shariati M (2016) Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane. Philos Mag Lett 96(8):322–329

    CAS  Google Scholar 

  13. Alian AR, Dewapriya MAN, Meguid SA (2017) Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites. Mater Design 124:47–57

    CAS  Google Scholar 

  14. Vardanyan VH, Urbassek HM (2019) Dislocation interactions during nanoindentation of nickel-graphene nanocomposites. Comput Mater Sci 170:109158

    CAS  Google Scholar 

  15. Liu XY, Wang FC, Wang WQ, Wu HA (2016) Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon 107:680–688

    CAS  Google Scholar 

  16. Zhang C, Lu C, Pei LQ, Li JQ, Wang R, Tieu K (2019) The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites. Carbon 143:125–137

    CAS  Google Scholar 

  17. Chang SW, Nair AK, Buehler MJ (2013) Nanoindentation study of size effects in nickel-graphene nanocomposites. Philos Mag Lett 93(4):196–203

    CAS  Google Scholar 

  18. Kim Y, Lee J, Yeom MS, Shin JW, Kim H, Cui Y, Kysar JW, Hone J, Jung Y, Jeon S, Han SM (2013) Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun 4:2114

    PubMed  Google Scholar 

  19. Duan K, Zhu FL, Tang K, He LP, Chen YM, Liu S (2016) Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput Mater Sci 117:294–299

    CAS  Google Scholar 

  20. Weng S, Ning H, Fu T, Hu N, Zhao Y, Huang C, Peng X (2018) Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Sci Rep 8(1):3089

    PubMed  PubMed Central  Google Scholar 

  21. Yue HY, Yao LH, Gao X, Zhang SL, Guo E, Zhang H, Lin XY, Wang B (2017) Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites. J Alloys Compd 691:755–762

    CAS  Google Scholar 

  22. Yan YP, Zhou SR, Liu S (2017) Atomistic simulation on nanomechanical response of indented graphene/nickel system. Comput Mater Sci 130:16–20

    CAS  Google Scholar 

  23. Rong Y, He HP, Zhang L, Li N, Zhu YC (2018) Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets. Comput Mater Sci 153:48–56

    CAS  Google Scholar 

  24. Klemenz A, Pastewka L, Balakrishna SG, Caron A, Bennewitz R, Moseler M (2014) Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett 14(12):7145–7152

    CAS  PubMed  Google Scholar 

  25. Wang WH, Peng Q, Dai YQ, Qian ZF, Liu S (2016) Distinctive nanofriction of graphene coated copper foil. Comput Mater Sci 117:406–411

    CAS  Google Scholar 

  26. Zhu XF, Zhao YB, Ma LP, Zhang GP, Ren WC, Peng XH, Hu N, Rintoul L, Bell JM, Yan C (2019) Graphene coating makes copper more resistant to plastic deformation. Compos Commun 12:106–111

    Google Scholar 

  27. Zhao YB, Peng XH, Fu T, Zhu XF, Hu N, Yan C (2018) Strengthening mechanisms of graphene coated copper under nanoindentation. Comput Mater Sci 144:42–49

    CAS  Google Scholar 

  28. Peng WX, Sun K, Abdullah R, Zhang M, Chen J, Shi JQ (2019) Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: a molecular dynamics simulation. Appl Surf Sci 487:22–31

    CAS  Google Scholar 

  29. Koltsova T, Nasibulina L, Anoshkin I, Mishin V, Kauppinen E, Tolochko O, Nasibulin A (2012) New hybrid copper composite materials based on carbon nanostructures. J Mater Sci Eng B 2:240–246

    CAS  Google Scholar 

  30. Yan Y, Lv J, Liu S (2018) Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil. Nanotechnology 29(16):165703

    PubMed  Google Scholar 

  31. He X, Bai QS, Shen RQ (2018) Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts. Carbon 130:672–679

    CAS  Google Scholar 

  32. Peng WX, Sun K, Zhang M, Shi JQ, Chen J (2019) Effects of graphene coating on the plastic deformation of single crystal copper nano-cuboid under different nanoindentation modes. Mater Chem Phys 225:1–7

    CAS  Google Scholar 

  33. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103

    CAS  Google Scholar 

  34. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  35. Zhang Z, Yang S, Guo D, Yuan B, Guo X, Zhang B, Huo Y (2015) Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy. Sci Rep 5:11290

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang JJ, Begau C, Geng L, Hartmaier A (2015) Atomistic investigation of wear mechanisms of a copper bi-crystal. Wear 332:941–948

    Google Scholar 

  37. Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B Condens Matter 37(8):3924–3931

    CAS  PubMed  Google Scholar 

  38. Vodenitcharova T, Zhang LC (2004) Mechanism of bending with kinking of a single-walled carbon nanotube. Phys Rev B 69(11):115410

    Google Scholar 

  39. Neek-Amal M, Peeters FM (2010) Nanoindentation of a circular sheet of bilayer graphene. Phys Rev B 81(23):235421

    Google Scholar 

  40. Bashirvand S, Montazeri A (2016) New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater Design 91:306–313

    CAS  Google Scholar 

  41. Huang SP, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf Sci 545(3):163–179

    CAS  Google Scholar 

  42. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    CAS  Google Scholar 

  43. Wang P, Cao Q, Yan Y, Nie Y, Liu S, Peng Q (2019) Graphene surface reinforcement of iron. Nanomaterials (Basel):9(1)

  44. Pastewka L, Pou P, Perez R, Gumbsch P, Moseler M (2008) Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys Rev B:78(16)

  45. Fu T, Peng XH, Zhao YB, Li TF, Li QB, Wang ZC (2016) Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride. J Alloys Compd 675:128–133

    CAS  Google Scholar 

  46. Fu T, Peng XH, Weng SY, Zhao YB, Gao FS, Deng LJ, Wang ZC (2016) Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers. Mat Sci Eng A-Struct 658:1–7

    CAS  Google Scholar 

  47. Fu T, Peng X, Chen X, Weng S, Hu N, Li Q, Wang Z (2016) Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep 6:35665

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci 18(1):015012

    Google Scholar 

  49. Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177(6):518–523

    CAS  Google Scholar 

  50. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci 20(8):085007

    Google Scholar 

  51. Montazeri A, Mobarghei A (2018) Nanotribological behavior analysis of graphene/metal nanocomposites via MD simulations: new concepts and underlying mechanisms. J Phys Chem Solids 115:49–58

    CAS  Google Scholar 

  52. Koinkar VN, Bhushan B (1997) Scanning and transmission electron microcopies of single-crystal silicon microworn/machined using atomic force microscopy. J Mater Res 12(12):3219–3224

    CAS  Google Scholar 

  53. Michel KH, Verberck B (2008) Theory of the evolution of phonon spectra and elastic constants from graphene to graphite. Phys Rev B 78(8):085424

    Google Scholar 

  54. Liu CL, Fang TH, Lin JF (2007) Atomistic simulations of hard and soft films under nanoindentation. Mat Sci Eng A-Struct 452:135–141

    Google Scholar 

  55. Gao Y, Ruestes CJ, Tramontina DR, Urbassek HM (2015) Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J Mech Phys Solids 75:58–75

    CAS  Google Scholar 

  56. Ziegenhain G, Urbassek HM, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107(6):061807

    Google Scholar 

  57. Goel S, Beake B, Chan CW, Faisal NH, Dunne N (2015) Twinning anisotropy of tantalum during nanoindentation. Mat Sci Eng A-Struct 627:249–261

    CAS  Google Scholar 

  58. Zhang L, Huang H, Zhao H, Ma Z, Yang Y, Hu X (2013) The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation. Nanoscale Res Lett 8(1):211

    PubMed  PubMed Central  Google Scholar 

  59. Wang CH, Fang TH, Cheng PC, Chiang CC, Chao KC (2015) Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys. J Mol Model 21(6):161

    PubMed  Google Scholar 

  60. Li J, Lu B, Zhang Y, Zhou H, Hu G, Xia R (2020) Nanoindentation response of nanocrystalline copper via molecular dynamics: grain-size effect. Mater Chem Phys 241:122391

    CAS  Google Scholar 

Download references

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China (Grant Nos. 12072241, 11102140, and 51575404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwang Wu or Re Xia.

Ethics declarations

Conflict of Interest

The authors have declared that they have no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., An, Q., Li, J. et al. Strengthening mechanisms of graphene in copper matrix nanocomposites: A molecular dynamics study. J Mol Model 26, 335 (2020). https://doi.org/10.1007/s00894-020-04595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04595-y

Keywords

Navigation