Skip to main content
Log in

In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. Numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction, have been applied to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. Here we briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. In the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Christian, The Theory of Transformations in Metals and Alloys (Oxford, UK: Pergamon Press, 1975).

    Google Scholar 

  2. J. Bowles and J. Mackenzie, Acta Metall. 2, 129 (1954).

    Article  Google Scholar 

  3. G. Olson and M. Cohen, Metall. Trans. A 7, 1905 (1976).

    Article  Google Scholar 

  4. M.-X. Zhang and P.M. Kelly, Progr. Mater. Sci. 54, 1101 (2009).

    Article  Google Scholar 

  5. J. Howe, R. Pond, and J. Hirth, Progr. Mater. Sci. 54, 792 (2009).

    Article  Google Scholar 

  6. J. Hirth and R. Pond, Progr. Mater. Sci. 56, 586 (2011).

    Article  Google Scholar 

  7. H. Bakker, G. Zhou, and H. Yang, Progr. Mater. Sci. 39, 159 (1995).

    Article  Google Scholar 

  8. P. Wollants, J. Roos, and L. Delaey, Progr. Mater. Sci. 37, 227 (1993).

    Article  Google Scholar 

  9. O. Matsumura, Y. Sakuma, and H. Takechi, Scr. Metall. 21, 1301 (1987).

    Article  Google Scholar 

  10. R. Zhu, S. Li, I. Karaman, R. Arroyave, T. Niendorf, and H.J. Maier, Acta Mater. 60, 3022 (2012).

    Article  Google Scholar 

  11. K. Otsuka and X. Ren, Progr. Mater. Sci. 50, 511 (2005).

    Article  Google Scholar 

  12. J. Ma, I. Karaman, and R.D. Noebe, Int. Mater. Rev. 55, 257 (2010).

    Article  Google Scholar 

  13. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  14. M. Chen, Annu. Rev. Mater. Res. 38, 445 (2008).

    Article  Google Scholar 

  15. M. Tahara, H. Kim, H. Hosoda, and S. Miyazaki, Acta Mater. 57, 2461 (2009).

    Article  Google Scholar 

  16. K. Tao, H. Choo, H. Li, B. Clausen, J.-E. Jin, and Y.-K. Lee, Appl. Phys. Lett. 90, 101911 (2007).

    Article  Google Scholar 

  17. Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, N. Li, and C.N. Tomé, Acta Mater. 77, 28 (2014).

    Article  Google Scholar 

  18. Y. Liu, J. Jian, J.H. Lee, C. Wang, Q.P. Cao, C. Gutierrez, H. Wang, J.Z. Jiang, and X. Zhang, Mater. Res. Lett. 2, 209 (2014).

    Article  Google Scholar 

  19. Y. Liu, I. Karaman, H. Wang, and X. Zhang, Adv. Mater. 26, 3893 (2014).

    Article  Google Scholar 

  20. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  21. C. Fan, C. Li, A. Inoue, and V. Haas, Phys. Rev. B 61, R3761 (2000).

    Article  Google Scholar 

  22. B.-G. Yoo, I.-C. Choi, Y.-J. Kim, J.-Y. Suh, U. Ramamurty, and J.-I. Jang, Mater. Sci. Eng. A 545, 225 (2012).

    Article  Google Scholar 

  23. J. Schroers and W.L. Johnson, Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  24. L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q.K. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, S.L. Zhang, B.Y. Wang, Y.W. Zeng, and J.Z. Jiang, Phys. Rev. Lett. 100, 075501 (2008).

    Article  Google Scholar 

  25. Q.P. Cao, J.W. Liu, K.J. Yang, F. Xu, Z.Q. Yao, A. Minkow, H.J. Fecht, J. Ivanisenko, L.Y. Chen, X.D. Wang, S.X. Qu, and J.Z. Jiang, Acta Mater. 58, 1276 (2010).

    Article  Google Scholar 

  26. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature 367, 541 (1994).

    Article  Google Scholar 

  27. J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science 295, 654 (2002).

    Google Scholar 

  28. M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  29. W.H. Jiang and M. Atzmon, Acta Mater. 51, 4095 (2003).

    Article  Google Scholar 

  30. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).

    Article  Google Scholar 

  31. A.M. Minor, S.A. Syed Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, Nat. Mater. 5, 697 (2006).

    Article  Google Scholar 

  32. J.H. Lee, T.B. Holland, A.K. Mukherjee, X. Zhang, and H. Wang, Sci. Rep. 3, 1061 (2013).

    Google Scholar 

  33. J.H. Lee, I. Kim, D.M. Hulbert, D. Jiang, A.K. Mukherjee, X. Zhang, and H. Wang, Acta Mater. 58, 4891 (2010).

    Article  Google Scholar 

  34. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay, Thin Solid Films 398–399, 331 (2001).

    Article  Google Scholar 

  35. S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Nat. Mater. 9, 473 (2010).

    Article  Google Scholar 

  36. A.R. Yavari, J.J. Lewandowski, and J. Eckert, MRS Bull. 32, 635 (2007).

    Article  Google Scholar 

  37. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95 (2009).

    Article  Google Scholar 

  38. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).

    Article  Google Scholar 

  39. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Ishida, Appl. Phys. Lett. 77, 3054 (2000).

    Article  Google Scholar 

  40. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, and V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

    Article  Google Scholar 

  41. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, and H.J. Maier, Acta Mater. 55, 4253 (2007).

    Article  Google Scholar 

  42. N. Jetta, N. Ozdemir, S. Rios, D. Bufford, I. Karaman, and X. Zhang, Thin Solid Films 520, 3433 (2012).

    Article  Google Scholar 

  43. M. Chmielus, X.X. Zhang, C. Witherspoon, D.C. Dunand, and P. Mullner, Nat. Mater. 8, 863 (2009).

    Article  Google Scholar 

  44. R. Niemann, U.K. Rößler, M.E. Gruner, O. Heczko, L. Schultz, and S. Fähler, Adv. Eng. Mater. 14, 562 (2012).

    Article  Google Scholar 

  45. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).

    Article  Google Scholar 

  46. H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, and H.J. Maier, Adv. Funct. Mater. 19, 983 (2009).

    Article  Google Scholar 

  47. S. Rios, D. Bufford, I. Karaman, H. Wang, and X. Zhang, Appl. Phys. Lett. 103, 132404 (2013).

    Article  Google Scholar 

  48. S. Rios, I. Karaman, and X. Zhang, Appl. Phys. Lett. 96, 173102 (2010).

    Article  Google Scholar 

  49. Z.H. Liu, M. Zhang, Y.T. Cui, Y.Q. Zhou, W.H. Wang, G.H. Wu, X.X. Zhang, and G. Xiao, Appl. Phys. Lett. 82, 424 (2003).

    Article  Google Scholar 

  50. K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, and K. Ishida, Appl. Phys. Lett. 81, 5201 (2002).

    Article  Google Scholar 

  51. Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 84, 1275 (2004).

    Article  Google Scholar 

  52. R.F. Hamilton, H. Sehitoglu, C. Efstathiou, and H.J. Maier, Acta Mater. 55, 4867 (2007).

    Article  Google Scholar 

  53. N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, and H.E. Karaca, Acta Mater. 60, 5670 (2012).

    Article  Google Scholar 

  54. C. Efstathiou, H. Sehitoglu, J. Carroll, J. Lambros, and H.J. Maier, Acta Mater. 56, 3791 (2008).

    Article  Google Scholar 

  55. S. Kaufmann, U.K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, Phys. Rev. Lett. 104, 145702 (2010).

    Article  Google Scholar 

  56. J.A. Venables, Phil. Mag. 7, 35 (1962).

    Article  Google Scholar 

Download references

Acknowledgements

X.Z. and Y.L. acknowledge financial support from NSF-CMMI under Grants 1129065 and 1161978. H.W. acknowledges support from the Office of Naval Research (under Dr. Lawrence Kabacoff and Dr. Antti Makinen, Grant N000141310555). The authors thank I. Karaman and J.Z. Jiang for fruitful discussion and materials synthesis. Access to the DOE-Center for Integrated Nanotechnologies (CINT) at Los Alamos and Sandia National laboratories and the use of microscopes at the Microscopy and Imaging Center at Texas A&M University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Liu or X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, H. & Zhang, X. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials. JOM 68, 226–234 (2016). https://doi.org/10.1007/s11837-015-1707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1707-y

Keywords

Navigation