Skip to main content
Log in

Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory BLYP/DNP and hyperhomodesmotic equations were employed to calculate ring strain energy, the bond dissociation energy of X–NO2 (X=C, N) and the charges on the nitro groups of several four-membered and six-membered heterocycle compounds. BLYP/DNP and LST/QST + CG method were also applied to calculate bond rotational energy of X–NO2 (X=C, N) of above mentioned compounds. It indicated that ring strain energy of four-membered heterocycle nitro compounds is apparently higher than that of six-membered heterocycle nitro compounds. Predictably, ring-opening reactions may preferentially occur for those compounds containing higher ring strain energy under shock. In addition, C–NO2 bonds in these compounds may rotate easier than N–NO2 bonds in response to the external shock. As for N–NO2 bonds in these compounds, they also respond to the external shock by the rotation of N–NO2 bonds, once to the saddle point of the rotational energy barrier, the whole molecule will become relaxed, N–NO2 bond becomes weaker and eventually leads to the breakage. When one −C=O, −C=NH or −NH2 group is introduced to the six-membered heterocycle, the charges on the nitro groups of the new compound decrease drastically, and ring strains increase remarkably. It can be predicted that the new compounds will be more sensitive to shock, and the viewpoint is confirmed by the experimental results of shock sensitivity (small scale gap test) of several explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kuklja MM (2003) Appl Phys A 76:359–366

    Article  CAS  Google Scholar 

  2. Tokmakoff A, Fayer MD, Dlott DD (1993) J Phys Chem 97:1901–1913

    Article  CAS  Google Scholar 

  3. Dlott DD (2000) Acc Chem Res 33:37–45

    Article  CAS  Google Scholar 

  4. McNesby KL, Coffey CS (1997) J Phys Chem B 101:3097–3104

    Article  CAS  Google Scholar 

  5. Tarver CM (1997) J Phys Chem A 101:4845–4851

    Article  CAS  Google Scholar 

  6. Matveev VG, Dubikhin VV, Nazin GM (1978) Izv Akad Nauk SSSR Ser Khim 474

  7. Bulusu S, Axenrod T (1979) Org Mass Spectrom 14:585–592

    Article  CAS  Google Scholar 

  8. Varga R, Zeman S (2006) J Hazard Mater 132:165–170

    Article  CAS  Google Scholar 

  9. Manaa MR, Fried LE (1999) J Phys Chem A 103:9349–9354

    Article  CAS  Google Scholar 

  10. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Int J Impact Eng 30:725–775

    Article  Google Scholar 

  11. Gupta YM (1995) J Phys IV 5:345–358

    CAS  Google Scholar 

  12. Dick JJ, Mulford RN, Spencer WJ, Pettit DR, Garcia E, Shaw DC (1991) J Appl Phys 70:3572–3587

    Article  CAS  Google Scholar 

  13. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  14. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  15. (2003) Material Studio 3.0. Acceryls Inc. San Diego

  16. Becke AD (1988) J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  19. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  20. Wheeler SE, Houk KN, von Rague Schleyer P, Allen WD (2009) J Am Chem Soc 131:2547–2560

    Article  CAS  Google Scholar 

  21. Gimarc BM, Zhao M (1997) Coord Chem Rev 158:385–412

    CAS  Google Scholar 

  22. Bach RD, Dmitrenko O (2002) J Org Chem 67:2588–2599

    Article  CAS  Google Scholar 

  23. Lewis LL, Turner LL, Salter EA, Magers DH (2002) J Mol Struct (THEOCHEM) 592:161–171

    Article  CAS  Google Scholar 

  24. Magers DH, Davis SR (1999) J Mol Struct (THEOCHEM) 487:205–210

    Article  CAS  Google Scholar 

  25. Wodrich MD, Gonthier JF, Steinmann SN, Corminboeuf C (2010) J Phys Chem A 114:6705–6712

    Article  CAS  Google Scholar 

  26. Dudev T, Lim C (1998) J Am Chem Soc 120:4450–4458

    Article  CAS  Google Scholar 

  27. Kan RO, Furey RL (1968) J Am Chem Soc 90:1666–1667

    Article  CAS  Google Scholar 

  28. Kamlet MJ (1959) NAVORD Rep. 6206. US Naval Ordnance Lab, Whiteoak

    Google Scholar 

  29. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232

    Article  CAS  Google Scholar 

  30. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  31. Tan B, Long X, Peng R, Li H, Jin B, Chu S, Dong H (2010) J Hazard Mater 183:908–912

    Article  CAS  Google Scholar 

  32. Zhang Y, Bauer SH (1998) J Phys Chem A 102:5846–5856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We will express our thanks for the support of National Defense Project of China:613830101-2, 00402040103-2, ZX1.1, and National Natural Science Foundation of China(21172203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bisheng Tan or Xinping Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Long, X., Li, J. et al. Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18, 5127–5132 (2012). https://doi.org/10.1007/s00894-012-1516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1516-y

Keywords

Navigation