Skip to main content
Log in

The branching angle effect on the properties of rigid dendrimers studied by Monte Carlo simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We studied the properties of rigid dendrimers with different branching angles by means of Monte Carlo simulations on a coarse-grained level. It was found that the terminal groups of dendrimers with both rigid and flexible spacers could locate near the center of the molecule. In flexible dendrimers, the wide distribution is attributed to the back folding of flexible spacers, while in rigid dendrimers, it is caused by the branching angle effect that a branch will grow laterally due to the restriction of a non-zero branching angle. It has been established that the branching angle is a key parameter for rigid dendrimers, which can be applied to tune the properties of rigid dendrimers: decreasing branching angle is helpful to obtain dendrimers with a larger size, lower density, and more terminal groups locating at periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

N/A

Code availability

N/A

References

  1. Frechet JM (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263(5154):1710–1714

    Article  CAS  PubMed  Google Scholar 

  2. Tomalia DA, Fréchet JM (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci A Polym Chem 40(16):2719–2728

    Article  CAS  Google Scholar 

  3. Ballauff M, Likos CN (2004) Dendrimers in solution: insight from theory and simulation. Angew Chem Int Ed 43(23):2998–3020

    Article  CAS  Google Scholar 

  4. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Zhou Y, Zhou Z, Piao Y, Kalva N, Liu X, Tang J, Shen Y (2018) Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polym Chem 9(4):438–449

    Article  CAS  Google Scholar 

  6. Khandare J, Calderón M (2015) Dendritic polymers for smart drug delivery applications. Nanoscale 7(9):3806–3807

    Article  CAS  PubMed  Google Scholar 

  7. Sikwal DR, Kalhapure RS, Govender T (2017) An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: janus amphiphilic dendrimers. Eur J Pharm Sci 97:113–134

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Posocco P, Liu X, Cheng Q, Laurini E, Zhou J, Liu C, Wang Y, Tang J, Col VD, Yu T, Giorgio S, Fermeglia M, Qu F, Liang Z, Rossi JJ, Liu M, Rocchi P, Pricl S, Peng L (2016) Mastering dendrimer self-assembly for efficient siRNA delivery: from conceptual design to in vivo efficient gene silencing. Small 12(27):3667–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang Z, Shi Q, Guo J, Meng F, Zhang Y, Lu Y, Qian Z, Li X, Zhou N, Zhang Z, Zhu X (2019) Binary tree-inspired digital dendrimer. Nat Commun 10(1):1918–1918

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Li B, Zhou Y, Lu Z, Yan D (2013) Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers. Soft Matter 9(12):3293–3304

    Article  CAS  Google Scholar 

  11. Tian WD, Ma YQ (2013) Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev 42(2):705–727

    Article  CAS  PubMed  Google Scholar 

  12. de Gennes P-G, Hervet H (1983) Statistics of “starburst” polymers. J Phys Lett-Paris 44(9):351–360

  13. Maiti PK, Cagin T, Wang GF, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37(16):6236–6254

    Article  CAS  Google Scholar 

  14. Jana C, Jayamurugan G, Ganapathy R, Maiti PK, Jayaraman N, Sood AK (2006) Structure of poly(propyl ether imine) dendrimer from fully atomistic molecular dynamics simulation and by small angle x-ray scattering. J Chem Phys 124(20):10

    Article  Google Scholar 

  15. Shi M, Yang Y, Qiu F (2018) Self-consistent field theory studies of flexible dendrimer in good solvent. Acta Chim Sin 76(9):715–722

    Article  CAS  Google Scholar 

  16. Zhang Y, Valiya Parambathu A, Chapman WG (2018) Density functional study of dendrimer molecules in solvents of varying quality. J Chem Phys 149(6):064904

    Article  PubMed  Google Scholar 

  17. Murat M, Grest GS (1996) Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules 29(4):1278–1285

    Article  CAS  Google Scholar 

  18. Götze I, Likos C (2003) Conformations of flexible dendrimers: a simulation study. Macromolecules 36(21):8189–8197

    Article  Google Scholar 

  19. Chen ZY, Cui S (1996) Monte Carlo simulations of star-burst dendrimers. Macromolecules 29(24):7943–7952

    Article  CAS  Google Scholar 

  20. Zook TC, Pickett GT (2003) Hollow-core dendrimers revisited. Phys Rev Lett 90(1):015502

    Article  PubMed  Google Scholar 

  21. Zhang G, Lu YY, Song JH, Shi TF (2010) Molecular dynamics simulation and static properties of flexible dendrimers in solution. Chem J Chin Univ 31:199

    CAS  Google Scholar 

  22. Yang Y, Qiu F, Zhang H, Yang Y (2017) The Rouse dynamic properties of dendritic chains: a graph theoretical method. Macromolecules 50:4007–4021

    Article  CAS  Google Scholar 

  23. Zhou T, Chen SB (2006) A simulation study on dynamics of dendrimer−polymer conjugates. Macromolecules 39(19):6686–6692

    Article  CAS  Google Scholar 

  24. Lee H, Baker JR, Larson RG (2006) Molecular dynamics studies of the size, shape, and internal structure of 0% and 90% acetylated fifth-generation polyamidoamine dendrimers in water and methanol. J Phys Chem B 110(9):4014–4019

  25. Majtyka M, Klos J (2006) Computer simulations of dendrimers with charged terminal groups. J Phys Condens Matter 18(15):3581–3589

    Article  CAS  Google Scholar 

  26. Lee H, Larson RG (2009) A molecular dynamics study of the structure and inter-particle interactions of polyethylene glycol-conjugated PAMAM dendrimers. J Phys Chem B 113(40):13202–13207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee H, Larson RG (2011) Effects of PEGylation on the size and internal structure of dendrimers: self-penetration of long PEG chains into the dendrimer core. Macromolecules 44(7):2291–2298

    Article  CAS  Google Scholar 

  28. Markelov DA, Polotsky AA, Birshtein TM (2014) Formation of a “hollow” interior in the fourth-generation dendrimer with attached oligomeric terminal segments. J Phys Chem B 118(51):14961–14971

    Article  CAS  PubMed  Google Scholar 

  29. Lewis T, Ganesan V (2012) Conjugation of polybasic dendrimers with neutral grafts: effect on conformation and encapsulation of acidic drugs. Soft Matter 8(47):11817–11830

    Article  CAS  Google Scholar 

  30. Majtyka M, Kłos J (2007) Monte Carlo simulations of a charged dendrimer with explicit counterions and salt ions. Phys Chem Chem Phys 9(18):2284–2292

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Ran Q, Haag R, Ballauff M, Dzubiella J (2017) Charged dendrimers revisited: effective charge and surface potential of dendritic polyglycerol sulfate. Macromolecules 50:4759–4769

    Article  CAS  Google Scholar 

  32. Brocorens P, Zojer E, Cornil J, Shuai Z, Leising G, Müllen K, Brédas J-L (1999) Theoretical characterization of phenylene-based oligomers, polymers, and dendrimers. Synth Met 100(1):141–162

    Article  CAS  Google Scholar 

  33. Wind M, Saalwächter K, Wiesler U-M, Müllen K, Spiess HW (2002) Solid-state NMR investigations of molecular dynamics in polyphenylene dendrimers: evidence of dense-shell packing. Macromolecules 35(27):10071–10086

    Article  CAS  Google Scholar 

  34. Rosenfeldt S, Dingenouts N, Pötschke D, Ballauff M, Berresheim AJ, Müllen K, Lindner P (2004) Analysis of the spatial dimensions of fully aromatic dendrimers. Angew Chem Int Ed 43(1):109–112

    Article  Google Scholar 

  35. Clark CG, Wenzel RJ, Andreitchenko EV, Steffen W, Zenobi R, Müllen K (2007) Controlled megaDalton assembly with locally stiff but globally flexible polyphenylene dendrimers. J Am Chem Soc 129(11):3292–3301

    Article  CAS  PubMed  Google Scholar 

  36. Carbone P, Negri F, Müller-Plathe F (2007) A coarse-grained model for polyphenylene dendrimers: switching and backfolding of planar three-fold core dendrimers. Macromolecules 40(19):7044–7055

    Article  CAS  Google Scholar 

  37. Brocorens P, Lazzaroni R, Brédas J-L (2007) Molecular modeling simulations of the morphology of polyphenylene dendrimers. J Phys Chem B 111(31):9218–9227

    Article  CAS  PubMed  Google Scholar 

  38. Gorman CB, Smith JC (2000) Effect of repeat unit flexibility on dendrimer conformation as studied by atomistic molecular dynamics simulations. Polymer 41(2):675–683

    Article  CAS  Google Scholar 

  39. Gorman CB, Smith JC (2001) Structure-property relationships in dendritic encapsulation. Acc Chem Res 34(1):60–71

    Article  CAS  PubMed  Google Scholar 

  40. Brutschy M, Stangenberg R, Beer C, Lubczyk D, Baumgarten M, Müllen K, Waldvogel SR (2015) The generation effect: cavity accessibility in dense-shell polyphenylene dendrimers. ChemPlusChem 80(1):54–56

    Article  CAS  Google Scholar 

  41. Honda H (1971) Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol 31(2):331–338

    Article  CAS  PubMed  Google Scholar 

  42. Honda H, Fisher JB (1978) Tree branch angle: maximizing effective leaf area. Science 199(4331):888–890

    Article  CAS  PubMed  Google Scholar 

  43. Carmesin I, Kremer K (1988) The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21:2819–2823

    Article  CAS  Google Scholar 

  44. Deutsch HP, Binder K (1991) Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study. J Chem Phys 94(3):2294–2304

    Article  CAS  Google Scholar 

  45. Kłos J, Sommer J-U (2009) Properties of dendrimers with flexible spacer-chains: a Monte Carlo study. Macromolecules 42(13):4878–4886

    Article  Google Scholar 

  46. Kłos J, Sommer J-U (2016) Dendrimer solutions: a Monte Carlo study. Soft Matter 12(44):9007–9013

    Article  PubMed  Google Scholar 

  47. Dolgushev M, Berezovska G, Blumen A (2011) Branched semiflexible polymers: theoretical and simulation aspects. Macromol Theory Simul 20(8):621–644

    Article  CAS  Google Scholar 

  48. Wengenmayr M, Dockhorn R, Sommer J-U (2016) Multicore unimolecular structure formation in single dendritic–linear copolymers under selective solvent conditions. Macromolecules 49(23):9215–9227

    Article  CAS  Google Scholar 

  49. Zhang JZ, Peng XY, Liu S, Jiang BP, Ji SC, Shen XC (2019) The persistence length of semiflexible polymers in lattice Monte Carlo simulations. Polymers 11(2):295

    Article  PubMed Central  Google Scholar 

  50. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  51. Lescanec RL, Muthukumar M (1991) Density profiles of simulated comburst molecules. Macromolecules 24(17):4892–4897

    Article  CAS  Google Scholar 

  52. Sheng Y, Jiang S, Tsao H (2002) Radical size of a starburst dendrimer in solvents of varying quality. Macromolecules 35(21):7865–7868

    Article  CAS  Google Scholar 

  53. Lee AT, McHugh AJ (2001) Dynamics of dendrimeric molecules undergoing simple shear flow: a nonequilibrium Brownian dynamics study. Macromol Theory Simul 10(4):244–254

    Article  CAS  Google Scholar 

  54. Markelov DA, Shishkin AN, Matveev VV, Penkova AV, Lähderanta E, Chizhik VI (2016) Orientational mobility in dendrimer melts: molecular dynamics simulations. Macromolecules 49(23):9247–9257

    Article  CAS  Google Scholar 

  55. Shavykin O, Mikhailov I, Darinskii A, Neelov I, Leermakers F (2018) Effect of an asymmetry of branching on structural characteristics of dendrimers revealed by Brownian dynamics simulations. Polymer 146:256–266

    Article  CAS  Google Scholar 

  56. Rahimi A, Amjad-Iranagh S, Modarress H (2016) Molecular dynamics simulation of coarse-grained poly(L-lysine) dendrimers. J Mol Model 22(3):59

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (No. 21464004); the State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources (Nos. CMEMR2013-A08, CMEMR2013-C11 and CMEMR2018-C9); Guangxi Natural Science Foundation of China (Nos. 2014GXNSFAA118038 and 2015GXNSFCB139005) and the Program for Key Scientific Researchof Guangxi Normal University (No. 2013ZD004).

Author information

Authors and Affiliations

Authors

Contributions

David R. M. Williams and Shichen Ji designed the research and wrote the paper. Shichen Ji, Xiangyao Peng and Linying Cheng carried out the simulations and analyzed data. Shichen Ji, Xing-Can Shen and Bang-Ping Jiang interpreted the results.

Corresponding author

Correspondence to Shichen Ji.

Ethics declarations

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Cheng, L., Jiang, B. et al. The branching angle effect on the properties of rigid dendrimers studied by Monte Carlo simulation. J Mol Model 27, 144 (2021). https://doi.org/10.1007/s00894-021-04767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04767-4

Keywords

Navigation