Skip to main content
Log in

Enhancement of hydrogen sorption on metal(Ni, Rh, Pd) functionalized carbon nanotubes: a DFT study

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Hydrogen interacted with pristine single-walled carbon nanotubes(SWNTs) and single/dimer metal doped ones(M-CNTs) was investigated via density functional theory(DFT) simulations. The most stable configura-tions of Ni, Rh, Pd on SWNTs were identified. The interaction of H2 molecules with pristine SWNTs and M-CNTs was investigated. The results show that H2 molecules can be adsorbed on the pristine SWNTs via a weak physical in-teraction, which is much weaker than those of H2 molecules with M-CNTs by chemisorption. Each Ni, Rh and Pd doped SWNTs can respectively chemisorb three, two, or one H2 molecules and the H―H bond of H2 molecule is elongated. Furthermore, the H2 molecule could be dissociated owing to the presence of the Ni-Ni bond for Ni dimer doped SWNT, forming new Ni―H bonds. While such a dissociation could not be observed on Rh2/Pd2-CNT samples. Density of state(DOS) results show that the s orbital of hydrogen can hybridize with the d orbital of metal atom, re-sulting in the stronger inteaction between H2 and M-CNTs, impying that the hydrogen storage capacity could be en-hanced in the presence of M-CNTs. The comparison of the interaction mechanism among different metals doped CNTs can screen out the most effective hydrogen-adsorption materials and the design of the related materials by computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang J., Sudik A., Wolverton C., Siegel D. J., Chem. Soc. Rev., 2010, 39, 656

    Article  CAS  Google Scholar 

  2. Jena P., J. Phys. Chem. Lett., 2011, 2(3), 206

    Article  CAS  Google Scholar 

  3. Deng J., Cai M., Sun W., Liao X., Chu W., Zhao X. S., ChemSus-Chem, 2013, 6(11), 2061

    Article  CAS  Google Scholar 

  4. Schlapbach L., Zuttel A., Nature, 2001, 414, 353

    Article  CAS  Google Scholar 

  5. Liu J., Lan L., Wu C., Li R., Liu X. Y., Chem. Res. Chinese Universi-ties, 2016, 32(2), 272

    Article  CAS  Google Scholar 

  6. Pan H. Z., Wang Y. L., He K. H., Wei M. Z., Ouyang Y., Chen L., Chin. Phys. B, 2013, 22(6), 067101

    Article  Google Scholar 

  7. Crabtree G. W., Dresselhaus M. S., Buchanan M. V., Phys. Today, 2004, 57(12), 39

    Article  CAS  Google Scholar 

  8. Coontz R., Hanson B., Science, 2004, 305(5686), 957

    Article  CAS  Google Scholar 

  9. Zhu Y. C., Chu W., Wang N., Lin T., Yang W., Wen J., Zhao X. S., RSC Adv., 2015, 5(38), 77958

    Article  CAS  Google Scholar 

  10. Deng J., Chu W., Wang B., Yang W., Zhao X. S., Catal. Sci. Technol., 2016, 6, 851

    Article  CAS  Google Scholar 

  11. Zhao A. M., Study on Ni-based Catalysts for Syngas Methanation, East China University of Science and Technology, Shanghai, 2012

    Google Scholar 

  12. Tibbetts G. G., Meisner G. P., Olk C. H., Carbon, 2001, 39(15), 2291

    Article  CAS  Google Scholar 

  13. Liu X. Y., Wang C. Y., Tang Y. J., Sun W. G., Wu W. D., Chinese Phys. B, 2010, 19(3), 036103

    Article  Google Scholar 

  14. Ritschel M., Uhlemann M., Gutfleisch O., Leonhardt A., Graff A., Täschner C., Fink J., Appl. Phys. Lett., 2002, 80(16), 2985

    Article  CAS  Google Scholar 

  15. Kajiura H., Tsutsui S., Kadono K., Kakuta M., Ata M., Murakami Y., Appl. Phys. Lett., 2003, 82(7), 1105

    Article  CAS  Google Scholar 

  16. Liu C., Chen Y., Wu C. Z., Xu S. T., Cheng H. M., Carbon, 2010, 48(2), 452

    Article  CAS  Google Scholar 

  17. Baughman R. H., Zakhidov A. A., Heer W. A., Science, 2002, 297(5582), 787

    Article  CAS  Google Scholar 

  18. Xiao H., Li S. H., Cao J. X., Chem. Phys. Lett., 2009, 483(1-3), 111

    Article  CAS  Google Scholar 

  19. Ni M. Y., Wang X., Zeng Z., Chin. Phys. B, 2009, 18(1), 357

    Article  CAS  Google Scholar 

  20. Seenithurai S., Kodi P. R., Vinodh K. S., Mahendran M., Int. J. Hy-drogen Energy, 2013, 38(18), 7376

    Article  CAS  Google Scholar 

  21. Luna C. R., Verdinelli V., Germán E., Seitz H., Volpe M. A., Pistone-si C., Jasen P. V., J. Phys. Chem. C, 2015, 119(23), 13238

    Article  CAS  Google Scholar 

  22. López-Corral I., Celis J., Juan A., Irigoyen B., Int. J. Hydrogen Energy, 2012, 37(13), 10156

    Article  Google Scholar 

  23. Yang Y. X., Singh R. K., Webley P. A., Adsorption, 2008, 14(2), 265

    Article  CAS  Google Scholar 

  24. Hwang S. W., Rather S., Naik M., Soo C. S., Nahm K. S., J. Alloy. Compd., 2009, 480(2), 20

    Article  Google Scholar 

  25. Larijani M. M., Safa S., Acta Phys. Pol. A, 2014, 126(3), 732

    Article  CAS  Google Scholar 

  26. Zhang L. P., Wu P., Sullivan M. B., J. Phys. Chem. C, 2011, 115(10), 4289

    Article  CAS  Google Scholar 

  27. Banerjee S., Dasgupta K., Kumar A., Ruz P., Vishwanadh B., Joshi J. B., Sudarsan V., Int. J. Hydrogen Energy, 2015, 40(8), 3268

    Article  CAS  Google Scholar 

  28. Lin K. Y., Tsai W. T., Chang J. K., Int. J. Hydrogen Energy, 2010, 35(14), 7555

    Article  CAS  Google Scholar 

  29. Reyhani A., Mortazavi S. Z., Mirershadi S., Moshfegh A. Z., Parvin P., Golikand A. N., J. Phys. Chem. C, 2011, 115(14), 6994

    Article  CAS  Google Scholar 

  30. Das T., Banerjee S., Dasgupta K., Joshi J. B., Sudarsan V., RSC Adv., 2015, 5, 41468

    Article  CAS  Google Scholar 

  31. Surya V. J., Iyakutti K., Venkataramanan N., Mizuseki H., Kawazoe Y., Int. J. Hydrogen Energy, 2010, 35(6), 2368

    Article  CAS  Google Scholar 

  32. Yildirim T., Ciraci S., Phys. Rev. Lett., 2005, 94(17), 175501

    Article  CAS  Google Scholar 

  33. Lee J. W., Kim H. S., Lee J. Y., Kang J. K., Appl. Phys. Lett., 2006, 88(14), 143126

    Article  Google Scholar 

  34. Verdinelli V., Germán E., Luna C. R., Marchetti J. M., Volpe M. A., Juan A., J. Phys. Chem. C, 2014, 118(48), 27672

    Article  CAS  Google Scholar 

  35. Shalabi A. S., Taha H. O., Soliman K. A., Abeld A. S., J. Power Sources, 2014, 271, 32

    Article  CAS  Google Scholar 

  36. Rather S., Naik M., Hwang S. W., Kim A. R., Nahm K. S., J. Alloy. Compd., 2009, 475(1/2), L17

    Article  CAS  Google Scholar 

  37. Soleymanabadi H., Kakemam J., Physica E: Low-dimensional Sys-tems and Nanostructures, 2013, 54, 115

    Article  CAS  Google Scholar 

  38. Chen L., Zhang Y., Koratkar N., Jena P., Nayak S. K., Phys. Rev. B, 2008, 77(3), 033405

    Article  Google Scholar 

  39. Okamoto Y., Miyamoto Y., J. Phys. Chem. B, 2001, 105(17), 3470

    Article  CAS  Google Scholar 

  40. Xie W., Sun W. J., Chu W., Jiang C. F., Xue Y., Appl. Surf. Sci., 2012, 258(17), 6239

    Article  CAS  Google Scholar 

  41. Jiang Q., Chu W., Sun W. J., Liu F., Xue Y., Acta Phys. Chim. Sin., 2012, 28(5), 1101

    CAS  Google Scholar 

  42. Sun W. J., Liu Z., Jiang C. F., Xue Y., Chu W., Zhao X., Catal. Today, 2013, 212(SI), 206

    Article  CAS  Google Scholar 

  43. Zhang X. W., Chu W., Zhuang H., Xu S., Chem. J. Chinese Universi-ties, 2005, 26(3), 493

    CAS  Google Scholar 

  44. Huang X., Chu W., Sun W. J., Jiang C. F., Feng Y. Y., Xue Y., Appl. Surf. Sci., 2014, 299, 162

    Article  CAS  Google Scholar 

  45. Liu F., Chu W. J., Sun W., Xue Y., Jiang Q., J. Energy Chem., 2012, 21(6), 708

    CAS  Google Scholar 

  46. Gu C., Gao G. H., Yu Y. X., Int. J. Hydrogen Energy, 2004, 29(5), 465

    Article  CAS  Google Scholar 

  47. Gu C., Gao G. H., Yu Y. X., J. Chem. Phys., 2003, 119(1), 488

    Article  CAS  Google Scholar 

  48. Chen Y. M., Li Q., Huang Y. H., Chem. J. Chinese Universities, 2010, 31(6), 1235

    Article  CAS  Google Scholar 

  49. Zhao H., Zhou L. N., Wei D. S., Zhou X. J., Shi H. F., Chem. J. Chi-nese Universities, 2016, 37(1), 100

    Google Scholar 

  50. Delley B., J. Chem. Phys., 1990, 92(1), 508

    Article  CAS  Google Scholar 

  51. Delley B., J. Chem. Phys., 2000, 113(18), 7756

    Article  CAS  Google Scholar 

  52. Perdew J. P., Wang Y., Phys. Rev. B, 1992, 45(23), 13244

    Article  CAS  Google Scholar 

  53. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865

    Article  CAS  Google Scholar 

  54. Grimme S., J. Comp. Chem., 2006, 27(15), 1787

    Article  CAS  Google Scholar 

  55. Ortmann F., Bechstedt F., Schmidt W. G., Phys. Rev. B, 2006, 73(20), 205101

    Article  Google Scholar 

  56. Anson A., Callejas M. A., Benito A. M., Maser W. K., Izquierdo M.T., Rubio B., Jagiello J., Thommes M., Parra J. B., Martinez M. T., Carbon, 2004, 42(7), 1243

    Article  CAS  Google Scholar 

  57. Yu Y. X., J. Mater. Chem. A, 2014, 2, 8910

    Article  CAS  Google Scholar 

  58. Yu Y. X., ACS Appl. Mater. Interfaces, 2014, 6, 16267

    Article  CAS  Google Scholar 

  59. Sun X. L., Huo R. P., Bu Y. X., Li J. L., Chem. J. Chinese Universi-ties, 2015, 36(8), 1570

    CAS  Google Scholar 

  60. Gholizadeh R., Yu Y. X., Appl. Surf. Sci., 2015, 357, 1187

    Article  CAS  Google Scholar 

  61. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188

    Article  Google Scholar 

  62. Li J., Furuta T., Goto H., Ohashi T., Fujiwara Y., Yip S., J. Chem. Phys., 2003, 119(4), 2376

    Article  CAS  Google Scholar 

  63. Zhou Z. Y., Steigerwald M., Hybertsen M., Brus L., Friesner R. A., J. Am. Chem. Soc., 2004, 126(11), 3597

    Article  CAS  Google Scholar 

  64. Cabria I., López M. J., Alonso J. A., Comp. Mater. Sci., 2006, 35(3), 238

    Article  CAS  Google Scholar 

  65. Gayathri V., Geetha R., Adsorption, 2007, 13(1), 53

    Article  CAS  Google Scholar 

  66. Jankowska M., Kupka T., Stobinski L., Kaminský J., J. Mol. Graph. Model., 2015, 55, 105

    Article  CAS  Google Scholar 

  67. Wei P., Sun L., Benassi E., Shen Z., Sanvito S., Hou S., J. Chem. Phys., 2011, 134(24), 244704

    Article  Google Scholar 

  68. Durgun E., Dag S., Bagci V. M. K., Gulseren O., Yildirim T., Ciraci S., Phys. Rev. B, 2003, 67(20), 201401

    Article  Google Scholar 

  69. Tabtimsai C., Wanno B., Ruangpornvisuti V., Mater. Chem. Phys., 2013, 138(2/3), 709

    Article  CAS  Google Scholar 

  70. Niu J., Rao B. K., Jena P., Phys. Rev. Lett., 1992, 68(15), 2277

    Article  CAS  Google Scholar 

  71. Wang W., Chu W., Wang N., Yang W., Jiang C. F., Int. J. Hydrogen Energy, 2016, 41(2), 967

    Article  CAS  Google Scholar 

  72. López-Corral I., Germán E., Juan A., Volpe M. A., Brizuela G. P., Int. J. Hydrogen Energy, 2012, 37(8), 6653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfa Jiang.

Additional information

Supported by the National Natural Science Foundation of China(No.201476145) and the National Basic Research Program of China(No.2011CB201202).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Chu, W., Sun, W. et al. Enhancement of hydrogen sorption on metal(Ni, Rh, Pd) functionalized carbon nanotubes: a DFT study. Chem. Res. Chin. Univ. 33, 422–429 (2017). https://doi.org/10.1007/s40242-017-6436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6436-z

Keywords

Navigation