Skip to main content
Log in

The mechanism of the ozonolysis on the surface of C70 fullerene: the electron localizability indicator study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The formation of C70O from C70O3 monomolozonide is a three-step process with the isomer dependent last step leading either to c,c-C70O epoxide or d,d-C70O oxidoannulene. The process involves the open intermediate (first O–O then Cc–Cc/Cd–Cd bonds broken), oxidoannulene-like structure intermediate (new Cc–O/Cd–O bond formed) and finally the oxide product. On the formation of c,c-C70O isomer, the final release of O2 is followed by the restoration of Cc–Cc bond, which stabilizes the product. Neither Cd–Cd bond is restored nor the total energy essentially lowered upon d,d-C70O formation. At all steps of the studied process, the four CC bonds adjacent to Cc–Cc or Cd–Cd bond, respectively, play a crucial role donating or withdrawing the necessary electron density. C70(O)O2 products, with O2 bridging one of the bonds adjacent to the parent Cc–Cc/Cd–Cd one, may compete with the oxide products. The OO bond in such structures is weak as suggested by its low electron population. For both c,c-C70O3 and d,d-C70O3, the shape of the potential energy surfaces (0 K) and the related, reported earlier, room temperature–free energy surfaces differ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M, Anz S, Sensharma D, Wudl F, Khemani KC, Koch A (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science 252:548–551. https://doi.org/10.1126/science.252.5005.548

    Article  CAS  PubMed  Google Scholar 

  2. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature. 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  3. Heymann D, Bachilo SM, Weisman RB (2002) Ozonides, epoxides, and oxidoannulenes of C70. J Am Chem Soc 124:6317–6323. https://doi.org/10.1021/ja012488p

    Article  CAS  PubMed  Google Scholar 

  4. Heymann D, Weisman RB (2006) Fullerene oxides and ozonides. Comptes Rendus Chim 9:1107–1116. https://doi.org/10.1016/J.CRCI.2006.02.003

    Article  CAS  Google Scholar 

  5. Bil A, Latajka Z, Morrison CA (2009) C70 oxides and ozonides and the mechanism of ozonolysis on the fullerene surface. A theoretical study. J Phys Chem A 113:9891–9898. https://doi.org/10.1021/jp9024798

    Article  CAS  PubMed  Google Scholar 

  6. Bil A, Latajka Z, Hutter J, Morrison CA (2014) Describing the chemical bonding in C70 and C70O3 – a quantum chemical topology study. Chem Phys 433:22–30. https://doi.org/10.1016/j.chemphys.2014.02.003

    Article  CAS  Google Scholar 

  7. Bil A, Latajka Z, Morrison CA (2014) Density functional theory based molecular dynamics simulations of C70O3 doped with light molecules. Chem Phys 428:121–126. https://doi.org/10.1016/j.chemphys.2013.10.011

    Article  CAS  Google Scholar 

  8. Bil A, Morrison CA (2012) Modifying the fullerene surface using endohedral noble gas atoms: density functional theory based molecular dynamics study of C70O3. J Phys Chem A 116:3413–3419. https://doi.org/10.1021/jp210529y

    Article  CAS  PubMed  Google Scholar 

  9. Bil A, Hutter J, Morrison CA (2014) Electron transfer modifies chemical properties of C70 fullerene surface: an ab initio molecular dynamics study of C70O3 molozonides doped with light atoms. Chem Phys Lett 605–606:93–97. https://doi.org/10.1016/j.cplett.2014.05.025

    Article  CAS  Google Scholar 

  10. Bil A (2019) The mechanism of ozonolysis on the surface of C70 fullerene. The free energy surface theoretical study. J Mol Struct 1185:361–368. https://doi.org/10.1016/J.MOLSTRUC.2019.03.005

    Article  CAS  Google Scholar 

  11. Huang Y-S, Wang G-W (2008) Ozonization of C70 and subsequent thermolysis of ozonide 1,2-C70O3: a theoretical study. J Mol Struct THEOCHEM 860:24–31. https://doi.org/10.1016/J.THEOCHEM.2008.03.010

    Article  CAS  Google Scholar 

  12. Criegee R (1975) Mechanism of Ozonolysis. Angew Chem Int Ed Eng 14:745–752. https://doi.org/10.1002/anie.197507451

    Article  Google Scholar 

  13. Geletneky C, Berger S (1998) The mechanism of ozonolysis revisited by 17O-NMR spectroscopy. Eur J Org Chem 1998:1625–1627. https://doi.org/10.1002/(SICI)1099-0690(199808)1998:8<1625::AID-EJOC1625>3.0.CO;2-L

    Article  Google Scholar 

  14. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  15. Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658. https://doi.org/10.1002/qua.10768

    Article  CAS  Google Scholar 

  16. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Electron localizability indicator for correlated wavefunctions. I. Parallel-spin pairs. Theor Chem Accounts 112:453–459. https://doi.org/10.1007/s00214-004-0615-y

    Article  CAS  Google Scholar 

  17. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  18. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature. 371:683–686. https://doi.org/10.1038/371683a0

    Article  CAS  Google Scholar 

  19. Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54. https://doi.org/10.1039/B605951C

    Article  CAS  PubMed  Google Scholar 

  20. Bil A, Latajka Z (2004) Examination of the hydroperoxy radical and its closed-shell “analogues” – the protonation sites: topological predictions and ab initio study of the protonated forms. Chem Phys 305:243–252. https://doi.org/10.1016/j.chemphys.2004.06.062

    Article  CAS  Google Scholar 

  21. Bil A, Latajka Z (2004) The examination of the hydroperoxy radical and its closed-shell “analogues” by means of topological methods of quantum chemistry: AIM and ELF. Chem Phys 303:43–53. https://doi.org/10.1016/j.chemphys.2004.05.020

    Article  CAS  Google Scholar 

  22. Knapp CE, Wann DA, Bil A, Schirlin JT, Robertson HE, McMillan PF, Rankin DWH, Carmalt CJ (2012) Dimethylalkoxygallanes: monomeric versus dimeric gas-phase structures. Inorg Chem 51:3324–3331. https://doi.org/10.1021/ic202775x

    Article  CAS  PubMed  Google Scholar 

  23. Bil A, Grzechnik K, Mierzwicki K, Mielke Z (2013) OH-induced oxidative cleavage of dimethyl disulfide in the presence of NO. J Phys Chem A 117:8263–8273. https://doi.org/10.1021/jp4047837

    Article  CAS  PubMed  Google Scholar 

  24. Andrés J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation. Chem Commun 52:8183–8195. https://doi.org/10.1039/C5CC09816E

    Article  CAS  Google Scholar 

  25. Krokidis X, Goncalves V, Savin A, Silvi B (1998) How malonaldehyde bonds change during proton transfer. J Phys Chem A 102:5065–5073. https://doi.org/10.1021/jp9734282

    Article  CAS  Google Scholar 

  26. Bil A, Latajka Z, Biczysko M (2018) Hydrogen detachment driven by a repulsive 1πσ* state – an electron localization function study of 3-amino-1,2,4-triazole. Phys Chem Chem Phys 20:5210–5216. https://doi.org/10.1039/C7CP06744E

    Article  CAS  PubMed  Google Scholar 

  27. Krokidis X, Silvi B, Dezarnaud-Dandine C, Sevin A (1998) Topological study, using a coupled ELF and catastrophe theory technique, of electron transfer in the Li+Cl2 system. New J Chem 22:1341. https://doi.org/10.1039/a801838c

    Article  CAS  Google Scholar 

  28. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100 http://pra.aps.org/abstract/PRA/v38/i6/p3098_1. Accessed 17 Mar 2014

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37 http://prb.aps.org/abstract/PRB/v37/i2/p785_1. Accessed 17 Mar 2014

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  31. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92:477–487

    Article  CAS  Google Scholar 

  32. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128. https://doi.org/10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  33. The CP2K developers group http://cp2k.org/, CP2K

  34. Goedecker S, Teter M (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B - Condens Matter Mater Phys 54:1703–1710. https://doi.org/10.1103/PhysRevB.54.1703

    Article  CAS  Google Scholar 

  35. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09

    Google Scholar 

  37. Kohout M (2011) DGrid-4.6

  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  39. Llusar R, Beltran A, Andres J, Noury S, Silvi B (1999) Topological analysis of electron density in depleted homopolar chemical bonds. J Comput Chem 20:1517–1526. https://doi.org/10.1002/(SICI)1096-987X(19991115)20:14<1517::AID-JCC4>3.0.CO;2-#

    Article  CAS  Google Scholar 

  40. Berski S, Mierzwicki K, Bil A, Latajka Z (2008) The protocovalent NO bond: quantum chemical topology (QCT of ELF and ELI-D) study on the bonding in the nitrous acid HONO and its relevancy to the experiment. Chem Phys Lett 460:559–562. https://doi.org/10.1016/j.cplett.2008.06.051

    Article  CAS  Google Scholar 

  41. Chapleski RC, Morris JR, Troya D (2014) A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions. Phys Chem Chem Phys 16:5977–5986. https://doi.org/10.1039/c3cp55212h

    Article  CAS  PubMed  Google Scholar 

  42. Xin N, Yang X, Zhou Z, Zhang J, Zhang S, Gan L (2013) Synthesis of C60 (O)3 : an open-cage fullerene with a ketolactone moiety on the orifice. J Org Chem 78:1157–1162. https://doi.org/10.1021/jo3026302

    Article  CAS  PubMed  Google Scholar 

  43. Kudo T, Akimoto Y, Shinoda K, Jeyadevan B, Tohji K, Nirasawa T, Waelchli M, Krätschmer W (2002) Characterization and structures of dimeric C70 oxides, C140O, synthesized with hydrothermal treatment. J Phys Chem B 106:4383–4389. https://doi.org/10.1021/jp0139989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express personal gratitude to professor Zdzisław Latajka, a noble man and a supervisor of their PhD theses, for fruitful long-standing collaboration.

Funding

A grant of computer time from the Wrocław Center for Networking and Supercomputing (WCSS) is gratefully acknowledged. A.B. would like to thank the Ministry of Science and Higher Education, Republic of Poland, for supporting this work under the grant no. N N204 280738.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bil.

Additional information

This paper is dedicated to Professor Zdzislaw Latajka, on occasion of his 70th birthday in recognition on his vital research contributions.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Zdzislaw Latajka 70th Birthday Festschrift

Electronic supplementary material

ESM 1

Figs. S1–S20 and Cartesian coordinates of the relevant stationary structures are available as Electronic supplementary material as well as extended discussion and additional comments concerning the bonds evolution along the reaction paths studied in the main body of the paper. (DOCX 5823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bil, A., Mierzwicki, K. The mechanism of the ozonolysis on the surface of C70 fullerene: the electron localizability indicator study. J Mol Model 26, 73 (2020). https://doi.org/10.1007/s00894-020-4333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4333-8

Keywords

Navigation