Skip to main content
Log in

Hydrogenation of S6-C60(CF3)12

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The first results of the hydrogenation of S6-symmetric trifluoromethylfullerene C60(CF3)12 in two types of reactions were reported: (1) high-temperature radical hydrogenation with 9,10-dihydroanthracene and (2) nucleophilic hydrogenation with sodium tetraborohydride under mild conditions. The high-temperature radical hydrogenation of S6-C60(CF3)12 is accompanied by partial elimination of CF3 groups and leads to the formation of a complex mixture of products of a composition C60(CF3)8–12H18–22. During the hydrogenation of NaBH4 under mild conditions, selective formation of the hydride C60(CF3)12H12 was recorded by mass spectroscopy. A kinetic analysis of the sequential nucleophilic hydrogenation of S6-C60(CF3)12 was performed, using quantum-chemical modeling at the level of density functional theory, under the assumption of linear correlation between the activation energy and the enthalpy of elementary steps of the same type. The isomeric composition was predicted for the series of anionic intermediates C60(CF3)12H\(_{{_{{2n-1}}}}^{ - }\) and their protonation products C60(CF3)12H2n, where n = 1–6. The hydrogenation of S6-C60(CF3)12 should lead to the formation of the thermodynamically and kinetically most stable product ortho-S6-C60(CF3)12H12, in which all hydrogen atoms are located in neighboring positions near the CF3 groups, forming together with them a near-equatorial belt of 24 addends while retaining the triphenylene fragments at two opposite poles. The average bond dissociation energy BDE(C–H) in ortho-S6-C60(CF3)12H12 is 298 kJ mol–1, which is approximately 20 kJ mol–1 higher than the BDE(C–H) of known fullerene hydrides C60H18 and C60H36 (PBE0/def2-SVP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 1.
Scheme 2.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. F. Gol’dshleger and A. P. Moravskii, Russ. Chem. Rev. 66, 323 (1997).

    Article  Google Scholar 

  2. J. Nossal, R. K. Saini, L. B. Alemany, et al., Eur. J. Org. Chem., 4167 (2001).

  3. R. Taylor, J. Fluorine Chem. 125, 359 (2004).

    Article  CAS  Google Scholar 

  4. A. A. Goryunkov, N. S. Ovchinnikova, I. V. Trushkov, et al., Russ. Chem. Rev. 76, 289 (2007).

    Article  CAS  Google Scholar 

  5. S. I. Troyanov and E. Kemnitz, Curr. Org. Chem. 16, 1060 (2012).

    Article  CAS  Google Scholar 

  6. S. I. Troyanov, A. Dimitrov, and E. Kemnitz, Angew. Chem., Int. Ed. Engl. 45, 1971 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. S. I. Troyanov and E. Kemnitz, Mendeleev Commun. 18, 27 (2008).

    Article  CAS  Google Scholar 

  8. P. A. Berseth, A. G. Harter, R. Zidan, et al., Nano Lett. 9, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. R. H. Scheicher, S. Li, C. M. Araujo, et al., Nanotecnology 22, 335401 (2011).

  10. V. A. Brotsman, N. S. Lukonina, and A. A. Goryunkov, Russ. Chem. Bull. 72, 20 (2023).

    Article  CAS  Google Scholar 

  11. A. V. Rybalchenko, T. V. Magdesieva, V. A. Brotsman, et al., Electrochim. Acta 174, 143 (2015).

    Article  CAS  Google Scholar 

  12. V. P. Bogdanov, O. O. Semivrazhskaya, N. M. Belov, et al., Chem.-Eur. J. 22, 15485 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. V. A. Brotsman, V. P. Bogdanov, A. V. Rybalchenko, et al., Chem. Asian J. 11, 1945 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. W. H. Powell, F. Cozzi, G. P. Moss, et al., Pure Appl. Chem. 74, 629 (2002).

    Article  CAS  Google Scholar 

  15. Y. Y. Duan, L. Shi, L. Q. Sun, et al., Int. J. Thermophys. 21, 393 (2000).

    Article  CAS  Google Scholar 

  16. L. Banfi, E. Narisano, R. Riva, et al., in Encyclopedia of Reagents for Organic Synthesis (Wiley, Chichester, UK, 2014), p. 1.

    Google Scholar 

  17. J. A. Rackers, Z. Wang, C. Lu, et al., J. Chem. Theory Comput. 14, 5273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. A. Granovsky, Firefly v. 8.2.0 (Formerly PC GAMESS)2016. http://classic.chem.msu.su/gran/firefly/index.html.

  19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  20. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  CAS  Google Scholar 

  23. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. D. V. Ignat’eva, A. A. Goryunkov, I. N. Ioffe, et al., J. Phys. Chem. A 117, 13009 (2013).

    Article  PubMed  Google Scholar 

  25. N. A. Romanova, T. S. Papina, V. A. Luk’yanova, et al., J. Chem. Thermodyn. 66, 59 (2013).

    Article  CAS  Google Scholar 

  26. F. N. Tebbe, R. L. Harlow, D. B. Chase, et al., Science (Washington, DC, U. S.) 256, 822 (1992).

    Article  CAS  Google Scholar 

  27. S. M. Pimenova, S. V. Melkhanova, V. P. Kolesov, et al., J. Phys. Chem. B 106, 2127 (2002).

    Article  CAS  Google Scholar 

  28. T. Papina, V. Luk’yanova, S. Troyanov, N. V. Chelovskaya, A. G. Buyanovskaya, and L. N. Sidorov, Russ. J. Phys. Chem. A 81, 159 (2007).

    Article  CAS  Google Scholar 

  29. C. Ruchardt, M. Gerst, J. Ebenhoch, et al., Angew. Chem., Int. Ed. Engl. 32, 584 (1993).

    Article  Google Scholar 

  30. A. D. Darwish, A. G. Avent, R. Taylor, et al., J. Chem. Soc., Perkin Trans. 2, 2051 (1996).

    Article  Google Scholar 

  31. A. A. Gakh, A. Y. Romanovich, and A. Bax, J. Am. Chem. Soc. 125, 7902 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. C. Rüchardt, M. Gerst, and M. Nölke, Angew. Chem., Int. Ed. Engl. 31, 1523 (1992).

    Article  Google Scholar 

  33. G.-W. Wang, Y.-J. Li, F.-B. Li, et al., Lett. Org. Chem. 2, 595 (2005).

    Article  CAS  Google Scholar 

  34. V. Y. Markov, A. Y. Borschevsky, and L. N. Sidorov, Int. J. Mass Spectrom. Ion Process. 325–327, 100 (2012).

    Article  Google Scholar 

  35. R. V. Khatymov, V. Y. Markov, R. F. Tuktarov, et al., Int. J. Mass Spectrom. Ion Process. 272, 119 (2008).

    Article  CAS  Google Scholar 

  36. R. V. Khatymov, R. F. Tuktarov, V. Y. Markov, et al., JETP Lett. 96, 659 (2013).

    Article  CAS  Google Scholar 

  37. N. A. Romanova, N. B. Tamm, V. Y. Markov, et al., Mendeleev Commun. 22, 297 (2012).

    Article  CAS  Google Scholar 

  38. M. P. Kosaya, T. S. Yankova, A. V. Rybalchenko, et al., J. Phys. Chem. A 125, 7876 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. O. N. Lavrent’eva and N. A. Romanova, in Abstracts of Invited Lectures and Contributed Papers (Russia, St. Petersburg, 2015), p. 77.

    Google Scholar 

  40. H. Çelikkan, M. Şahin, M. L. Aksu, et al., Int. J. Hydrogen Energy 32, 588 (2007).

    Article  Google Scholar 

  41. H. P. Spielmann, G.-W. Wang, M. S. Meier, et al., Org. Chem. 63, 9865 (1998).

    Article  CAS  Google Scholar 

  42. H. P. Spielmann, B. R. Weedon, and M. S. Meier, Org. Chem. 65, 2755 (2000).

    Article  CAS  Google Scholar 

  43. B. W. Clare and D. L. Kepert, J. Mol. Struct.: THEOCHEM 315, 71 (1994).

    Article  Google Scholar 

  44. B. W. Clare and D. L. Kepert, J. Mol. Struct.: THEOCHEM 621, 211 (2003).

    Article  CAS  Google Scholar 

  45. B. W. Clare and D. L. Kepert, J. Mol. Struct.: THEOCHEM 622, 185 (2003).

    Article  CAS  Google Scholar 

  46. D. L. Kepert and B. W. Clare, Coord. Chem. Rev. 155, 1 (1996).

    Article  CAS  Google Scholar 

  47. B. W. Clare and D. L. Kepert, J. Mol. Struct.: THEOCHEM 303, 1 (1994).

    Article  Google Scholar 

  48. O. V. Boltalina, V. Y. Markov, R. Taylor, et al., Chem. Commun. 22, 2549 (1996).

    Article  Google Scholar 

  49. B. W. Clare and D. L. Kepert, J. Mol. Struct. 536, 99 (2001).

    Article  CAS  Google Scholar 

  50. O. V. Boltalina, V. Y. Markov, P. A. Troshin, et al., Angew. Chem., Int. Ed. Engl. 40, 787 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. A. A. Popov, A. A. Goryunkov, I. V. Goldt, et al., J. Phys. Chem. A 108, 11449 (2004).

    Article  CAS  Google Scholar 

  52. N. B. Shustova, Z. Mazej, Y.-S. Chen, et al., Angew. Chem. Int. J 49, 812 (2010).

    Article  CAS  Google Scholar 

  53. O. V. Boltalina, A. A. Goryunkov, V. Y. Markov, et al., Int. J. Mass Spectrom. Ion Process. 228, 807 (2003).

    Article  CAS  Google Scholar 

  54. G. V. Lier, M. Cases, C. P. Ewels, et al., J. Org. Chem. 70, 1565 (2005).

    Article  PubMed  Google Scholar 

  55. C. P. Ewels, G. van Lier, P. Geerlings, et al., J. Chem. Inf. Model. 47, 2208 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. E. I. Dorozhkin, D. V. Ignat’eva, N. B. Tamm, et al., Chem.-Eur. J. 12, 3876 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. E. I. Dorozhkin, A. A. Goryunkov, I. N. Ioffe, et al., Eur. J. Org. Chem., 5082 (2007).

  58. N. M. Belov, M. G. Apenova, A. V. Rybalchenko, et al., Chem.-Eur. J. 20, 1126 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. N. B. Tamm, M. A. Fritz, N. A. Romanova, et al., Chem. Sel. 7 (44) (2022). https://doi.org/10.1002/slct.202202214

  60. N. B. Tamm, M. A. Fritz, N. A. Romanova, et al., Chem. Sel. 7 (19) (2022). https://doi.org/10.1002/slct.202200968

  61. N. A. Romanova, M. A. Fritts, K. Chang, N. B. Tamm, A. A. Goryunkov, L. N. Sidorov, K. Scheurell, E. Kemnitz, and S. I. Troyanov, Russ. Chem. Bull. 63, 2657 (2014).

    Article  CAS  Google Scholar 

  62. N. A. Romanova, M. A. Fritz, K. Chang, et al., Chem.-Eur. J. 19, 11707 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. S. I. Troyanov, A. A. Goryunkov, E. I. Dorozhkin, et al., J. Fluorine Chem. 128, 545 (2007).

    Article  CAS  Google Scholar 

  64. N. A. Samokhvalova, P. A. Khavrel, V. Y. Markov, et al., Eur. J. Org. Chem., 2935 (2009).

  65. M. P. Kosaya, A. V. Rybalchenko, N. S. Lukonina, et al., Chem. Asian J. 13, 1920 (2018).

    Article  CAS  Google Scholar 

  66. P. A. Khavrel, M. G. Serov, G. G. Petukhova, et al., J. Fluorine Chem., 109598 (2020).

  67. M. G. Apenova, O. O. Semivrazhskaya, E. V. Borkovskaya, et al., Chem. Asian J. 10, 1370 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. N. S. Ovchinnikova, A. A. Goryunkov, P. A. Khavrel, et al., Dalton Trans. 40, 959 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. D. C. Wigfield, Tetrahedron 35, 449 (1979).

    Article  CAS  Google Scholar 

  70. R. G. Bergosh, M. S. Meier, J. A. Laske Cooke, et al., Org. Chem. 62, 7667 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.M. Belov for recording the NMR spectra.

Funding

N.A.R. acknowledges the support of the Russian Science Foundation, project no. 22-73-10042. This work was performed using the equipment purchased within the framework of the federal project “Development of Infrastructure for Scientific Research and Training” of the national project “Science and Universities.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Romanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, N.A., Markov, V.Y. & Goryunkov, A.A. Hydrogenation of S6-C60(CF3)12. Russ. J. Phys. Chem. 97, 1964–1977 (2023). https://doi.org/10.1134/S0036024423090200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090200

Keywords:

Navigation