Skip to main content
Log in

A general model for the solubilities of gases in liquids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The solubility of a compound is one of its most important properties. Here, regression relationships are presented for solubilities of a series of gases in water and in four organic solvents, treating each solvent separately. The solubilities are related to the Coulombic intermolecular interactions arising from the intrinsic polarities of the solute molecules and the polarities induced in them by the solvent. As a measure of intrinsic polarity, a statistical quantity defined in terms of the solute’s molecular electrostatic potential is used, and the measure of induced polarity is taken to be the solute’s molecular polarizability. Regression analyses show that solubility in water is best expressed in terms of just the intrinsic polarities of the solutes, but for the organic solvents, it is necessary to take into account both the intrinsic and the induced polarities of the solutes. If the dielectric constant of the solvent is included in the regression analysis, then a single relationship can encompass all four organic solvents. Solute molecular volumes were not found to contribute significantly to the present relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campanell FC, Battino R, Seybold PG (2010) On the role of solute polarizability in determining the solubilities of gases in liquids. J. Chem. Eng. Data 55:37–40

    Article  CAS  Google Scholar 

  2. Truhlar DG (2019) Dispersion forces: neither fluctuating nor dispersing. J. Chem. Educ. 96:1671–1675

    Article  CAS  Google Scholar 

  3. Eisenschitz R, London F (1930) Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften. Z Physik 60:491–527

    Article  CAS  Google Scholar 

  4. Feynman RP (1939) Forces in molecules. Phys. Rev. 56:340–343

    Article  CAS  Google Scholar 

  5. Battino R, Seybold PG, Campanell FC (2011) Correlations involving the solubility of gases in water at 298.15 K and 101325 Pa. J Chem Engr Data 56:727–732

    Article  CAS  Google Scholar 

  6. Politzer P, Daiker KC (1981) In: Deb BM (ed) Models for chemical reactivity.In: the force concept in chemistry. Van Nostrand Reinhold, New York, pp 294–387

    Google Scholar 

  7. Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH Publishers, New York, pp 273–312

    Google Scholar 

  8. Brinck T (1998) The use of the electrostatic potential for analysis and prediction of intermolecular interactions. In: Parkanyi C (ed) Theoretical organic chemistry. Elsevier, Amsterdam, pp 51–93

    Chapter  Google Scholar 

  9. Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43:5310–5324

    Article  CAS  Google Scholar 

  10. Aakerӧy CB, Wijethunga TK, Desper J (2015) Molecular electrostatic potential dependent selectivity of hydrogen bonding. New J Chem 39:822-828

  11. Murray JS, Politzer P (2017) Molecular electrostatic potentials and noncovalent interactions. WIREs Comput Mol Sci 7:e1326

    Article  CAS  Google Scholar 

  12. Stewart RF (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem. Phys. Lett. 65:335–342

    Article  CAS  Google Scholar 

  13. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum Press, New York

    Google Scholar 

  14. Klein CL, Stevens ED (1988) Experimental measurements of electron density distributions and electrostatic potentials. In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH Publishers, New York, pp 25–64

    Google Scholar 

  15. Bachrach SM (1994) Population analysis and electron densities from quantum mechanics. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH Publishers, New York, pp 171–227

    Google Scholar 

  16. Price SL (1996) Applications of realistic electrostatic modelling to molecules in complexes, solids and proteins. J Chem Soc Faraday Trans 92:2997–3008

    Article  CAS  Google Scholar 

  17. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  18. Gross KC, Hadad CM, Seybold PG (2012) Charge competition in halogenated hydrocarbons. Internat. J. Quantum Chem. 112:219–229

    Article  CAS  Google Scholar 

  19. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules. Atomic volumes. J. Am. Chem. Soc. 109:7968–7979

    Article  CAS  Google Scholar 

  20. Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J MolStruct (Theochem) 425:107–114

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (2001) Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials. Fluid Phase Equil 185:129–137

    Article  CAS  Google Scholar 

  22. Hellmann H (1937) Einführung in die Quantenchemie. Deuticke, Leipzig

    Google Scholar 

  23. Lide DR (ed) (1997) Handbook of chemistry and physics, 78th ed. CRC press, Boca Raton

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A1. Gaussian Inc, Wallingford

    Google Scholar 

  25. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surface properties: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16:1679–1691

    Article  CAS  Google Scholar 

  26. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94:2027–2094

    Article  CAS  Google Scholar 

  27. Cramer CJ, Truhlar DG (1994) Development and biological applications of quantum mechanical continuum solvation models. In: Politzer P, Murray JS (eds) Quantitative treatments of solute/solvent interactions. Elsevier, Amsterdam, pp 9–54

    Google Scholar 

  28. Orozco M, Alhambra C, Barril X, Lopez JM, Busquets MA, Luque FJ (1996) Theoretical methods for the representation of solvent. J. Mol. Model. 2:1–15

    Article  Google Scholar 

  29. Cramer CJ, Truhlar DG (1996) In: solvent effects and chemical reactivity, Tapia O, Bertrán J, Eds, Kluwer, Dordrecht, pp 1-80

  30. Cramer CJ, Truhlar DG (1999) Implicit solution models: equilibria, structure, spectra, and dynamics. Chem. Rev. 99:2161–2200

    Article  CAS  Google Scholar 

  31. Politzer P, Murray JS (2006) Quantitative approaches to solute-solvent interactions. In: Vayenas CG, White RE, Gamboa-Adelco ME (eds) Modern aspects of electrochemistry, no. 39. Springer, Berlin, pp 1–63

    Google Scholar 

  32. Glasstone S (1940) Text-book of physical chemistry. Van Nostrand, New York

    Google Scholar 

  33. Teixeira-Das JJC, Murrell JN (1970) The calculation of electric polarizabilities of hydrocarbons with particular attention to the bond-additive property. Mol. Phys. 19:329–335

    Article  Google Scholar 

  34. Gough KM (1989) Theoretical analysis of molecular polarizabilities and polarizabillity derivatives in hydrocarbons. J. Chem. Phys. 91:2424–2432

    Article  CAS  Google Scholar 

  35. Brinck T, Murray JS, Politzer P (1993) Polarizability and volume. J. Chem. Phys. 98:4305–4306

    Article  CAS  Google Scholar 

  36. Jin P, Murray JS, Politzer P (2004) Local ionization energies and local polarizability. Int. J. Quantum Chem. 96:394–401

    Article  CAS  Google Scholar 

  37. Randić M (1991) Orthogonoal molecular descriptors. New J Chem 15:517–525

    Google Scholar 

  38. Randić M (1991) Resolution of ambiguities in structure-property studies by use of orthogonal descriptors. J. Chem. Inf. Comput. Sci. 31:311–320

    Article  Google Scholar 

  39. Randić M, Seybold PG (1993) Molecular shape as a critical factor in structure-property-activity studies. SAR and QSAR in Environ Res 1:77–85

    Article  Google Scholar 

  40. Peterangelo SC, Seybold PG (2004) Synergistic interactions among QSAR descriptors. Int. J. Quantum Chem. 96:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J.S., Seybold, P.G., Battino, R. et al. A general model for the solubilities of gases in liquids. J Mol Model 26, 244 (2020). https://doi.org/10.1007/s00894-020-04505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04505-2

Keywords

Navigation