Skip to main content
Log in

The HSAB principle from a finite-temperature grand-canonical perspective

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We provide a new proof for Pearson’s hard/soft acid/base (HSAB) principle. Unlike alternative proofs, we do not presuppose a simplified parabolic dependence on the energy of the system with respect to changes in its number of electrons. Instead, we use the more physically grounded finite-temperature formulation of the grand-canonical ensemble. We show that under the usual assumptions regarding the chemical potentials and hardnesses of the involved species, the HSAB rule holds for a wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  2. Pearson RG (1966) Acids and bases. Science 151:172–177

    Article  CAS  Google Scholar 

  3. Pearson RG (1967) Hard and soft acids and bases. ChemBr 3(3):103–107

    CAS  Google Scholar 

  4. Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102

    Article  Google Scholar 

  5. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Article  Google Scholar 

  6. Cardenas C, Ayers PW (2013) How reliable is the hard-soft acid-base principle? An assessment from numerical simulations of electron transfer energies. PCCP 15(33):13959–13968. https://doi.org/10.1039/c3cp51134k

    Article  CAS  Google Scholar 

  7. Ayers PW, Cardenas C (2013) Communication: a case where the hard/soft acid/base principle holds regardless of acid/base strength. J Chem Phys 138:181106

    Article  Google Scholar 

  8. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    Article  CAS  Google Scholar 

  9. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  10. Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593

    Article  CAS  Google Scholar 

  11. Mendez F, Gazquez JL (1994) Chemical-reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301

    Article  CAS  Google Scholar 

  12. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  13. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  14. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  15. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  16. Ayers PW, Parr RG (2001) Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J Am Chem Soc 123:2007–2017

    Article  CAS  Google Scholar 

  17. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  18. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT”. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–764

    Google Scholar 

  19. Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, Florida

    Google Scholar 

  20. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sin 25:590–600

    CAS  Google Scholar 

  21. Gazquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    CAS  Google Scholar 

  22. Miranda-Quintana RA (2018) Density functional theory for chemical reactivity. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, Hamilton

  23. Fuentealba P, Cárdenas C (2015) Density functional theory of chemical reactivity. In: Springborg M (ed) Chemical modelling, vol 11. The Royal Society of Chemistry, London, pp 151–174

    Google Scholar 

  24. Chattaraj PK, Ayers PW (2005) The maximum hardness principle implies the hard/soft acid/base rule. J Chem Phys 123:086101

    Article  Google Scholar 

  25. Chattaraj PK, Ayers PW, Melin J (2007) Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions. PCCP 9:3853–3856

    Article  CAS  Google Scholar 

  26. Miranda-Quintana RA (2017) The minimum electrophilicity and the hard/soft acid/base principles. J Chem Phys 146:046101

    Article  Google Scholar 

  27. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  28. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  29. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  30. Cardenas C, Ayers PW, De Proft F, Tozer DJ, Geerlings P (2011) Should negative electron affinities be used for evaluating the chemical hardness. PCCP 13:2285–2293

    Article  CAS  Google Scholar 

  31. Cardenas C, Heidar Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. PCCP 18:25721–25734

    Article  CAS  Google Scholar 

  32. Heidar Zadeh F, Richer M, Fias S, Miranda-Quintana RA, Chan M, Franco-Pérez M, Gonzalez-Espinoza CE, Kim TD, Lanssens C, Patel AHG, Yang XD, Vohringer-Martinez E, Cardenas C, Verstraelen T, Ayers PW (2016) An explicit approach to conceptual density functional theory descriptors of arbitrary order. Chem Phys Lett 660:307–312

    Article  CAS  Google Scholar 

  33. Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Acc 118:371–381

    Article  CAS  Google Scholar 

  34. Fuentealba P, Cardenas C (2013) On the exponential model for energy with respect to number of electrons. J Mol Model 19:2849–2853

    Article  Google Scholar 

  35. Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803

    Article  CAS  Google Scholar 

  36. Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–5564

    Article  CAS  Google Scholar 

  37. Miranda-Quintana RA, Ayers PW (2018) Grand-canonical interpolation models. In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, Hamilton

  38. Miranda-Quintana RA, Ayers PW (2016) Interpolation of property-values between electron numbers is inconsistent with ensemble averaging. J Chem Phys 144:244112

    Article  Google Scholar 

  39. Heidar Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) When is the Fukui function not normalized? The danger of inconsistent energy interpolation models in density functional theory. J Chem Theory Comp 12:5777–5787

    Article  CAS  Google Scholar 

  40. Perdew JP, Parr RG, Levy M, Balduz JL Jr. (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  41. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175

    Article  CAS  Google Scholar 

  42. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303

    Article  CAS  Google Scholar 

  43. Bochicchio RC, Rial D (2012) Note: energy convexity and density matrices in molecular systems. J Chem Phys 137:226101

    Article  Google Scholar 

  44. Bochicchio RC, Miranda-Quintana RA, Rial D (2013) Communication: Reduced density matrices in molecular systems: grand-canonical electron states. J Chem Phys 139(19):191101. https://doi.org/10.1063/1.4832495

    Article  Google Scholar 

  45. Miranda-Quintana RA, Bochicchio RC (2014) Energy dependence with the number of particles: density and reduced density matrices functionals. Chem Phys Lett 593:35–39. https://doi.org/10.1016/j.cplett.2013.12.071

    Article  CAS  Google Scholar 

  46. Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. PhysRev 137:A1441–A1443

    Google Scholar 

  47. Franco-Pérez M, Ayers P, Gazquez JL, Vela A (2015) Local and linear chemical reactivity responsefunctions at finite temperature in density functional theory. J Chem Phys 143:244117

    Article  Google Scholar 

  48. Franco-Pérez M, Gazquez JL, Ayers P, Vela A (2015) Revisiting the definition of electronic chemical potential, chemical hardness, and softness at finite temperatures. J Chem Phys 143:154103

    Article  Google Scholar 

  49. Franco-Pérez M, Heidar-Zadeh F, Ayers PW, Gazquez JL, Vela A (2017) Going beyond the three-states ensemble model: the electronic chemical potential and Fukui function for the general case. PCCP 19:11588–11602

    Article  Google Scholar 

  50. Franco-Pérez M, Ayers PW, Gazquez JL, Vela A (2017) Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory. PCCP 19:13687–13695

    Article  Google Scholar 

  51. Polanco-Ramírez CA, Franco-Pérez M, Carmona-Espíndola J, Gazquez JL, Ayers PW (2017) Revisiting the definition of local hardness and hardness kernel. PCCP 19:12355–12364

    Article  Google Scholar 

  52. Miranda-Quintana RA, Ayers PW (2016) Fractional electron number, temperature, and perturbations in chemical reactions. PCCP 18:15070–15080

    Article  CAS  Google Scholar 

  53. Miranda-Quintana RA, Ayers PW (2016) Charge transfer and chemical potential in 1,3-dipolar cycloadditions. Theor Chem Acc 135:172

    Article  Google Scholar 

  54. Miranda-Quintana RA, González MM, Ayers PW (2016) Electronegativity and redox reactions. PCCP 18:22235–22243

    Article  CAS  Google Scholar 

  55. Miranda-Quintana RA (2017) Thermodynamic electrophilicity. J Chem Phys 146:214113

    Article  Google Scholar 

  56. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) Finite temperature grand canonical ensemble study of the minimum electrophilicity principle. J Chem Phys 147:124103

    Article  Google Scholar 

  57. Malek A, Balawender R (2015) Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness. J Chem Phys 142:054104. https://doi.org/10.1063/1.4906555

    Article  Google Scholar 

  58. Franco-Pérez M, Gazquez JL, Ayers PW, Vela A (2017) Thermodynamic hardness and the maximum hardness principle. J Chem Phys 147:074113

    Article  Google Scholar 

  59. Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  60. Chattaraj PK, Cedillo A, Parr RG (1996) Chemical softness in model electronic systems: dependence on temperature and chemical potential. ChemPhys 204:429–437

    CAS  Google Scholar 

Download references

Acknowledgements

RAMQ, TDK, and PWA thank NSERC, the Canada Research Chairs, and Compute Canada for support. RAMQ acknowledges support from Foreign Affairs, Trade and Development Canada in the form of an ELAP scholarship. CC acknowledges support by FONDECYT (Grant 1140313), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and Project RC-130006 CILIS, Granted by the Fondo de Innovación para la Competitividad del Ministerio de Economía, Fomento y Turismo de Chile. Discussions with Laritza Domínguez and Cristina González are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alain Miranda-Quintana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A., Kim, T.D., Cárdenas, C. et al. The HSAB principle from a finite-temperature grand-canonical perspective. Theor Chem Acc 136, 135 (2017). https://doi.org/10.1007/s00214-017-2167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2167-y

Keywords

Navigation