Skip to main content
Log in

Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we present a computational investigation on the reactions between two well-known antioxidants (quercetin and morin) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). A density functional theory (DFT) approach with the B3LYP functional and the 6-31G(d,p) basis set was used for the simulations. The structural and energetic parameters (Gibbs free-energy, ΔG, and Gibbs free-energy of activation, ΔG++) were determined to provide information on the antioxidant activity as well as to evaluate the contributions of each hydroxyl group to the referred property. According to the results obtained, quercetin presented three hydroxyls as being thermodynamically spontaneous in the reaction with DPPH (4\(^{\prime }\)-ArOH, 3\(^{\prime }\)-ArOH, and 3-ArOH, with ΔG = -4.93 kcal/mol, -2.89 kcal/mol, and -1.87 kcal/mol, respectively) against only two in the case of morin (2\(^{\prime }\)-ArOH and 3-ArOH, with ΔG = -7.56 kcal/mol and -4.57 kcal/mol, respectively). Hence, quercetin was found to be a more efficient antioxidant, which is in agreement with different experimental and computational investigations of bond dissociation enthalpies (BDEs). However, the order of contribution of the OH groups of each compound to the antioxidant potential present some differences when compared to what was seen in the previous investigations, especially for morin. These findings are in contrast to what was observed in studies based on the determinations of BDEs. Therefore, experimental investigations on the hydrogen-atom transfer mechanism (HAT) for both compounds are encouraged in order to clarify these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  2. Zhang XC, Chen F, Wang MF (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62:1643–1648

    Article  CAS  PubMed  Google Scholar 

  3. Wu S, Yano S, Chen J, Hisanaga A, Sakao K, He J, Hou D-X (2017) Polyphenols from Lonicera caerulea L. berry inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators. J Agric Food Chem 65:5133–5141

    Article  CAS  PubMed  Google Scholar 

  4. Aswathy VV, Alper-Hayta S, Yalcin G, Mary YS, Panicker CY, Jojo PJ, Kaynak-Onurdag F, Armaković S, Armaković SJ, Yildiz I, Alsenoy CV (2017) Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures. J Mol Struct 1141:495–511

    Article  CAS  Google Scholar 

  5. Belščak-Cvitanović A, Durgo K, Bušić A, Franekić J, Komes D (2014) Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (HEp2) cells. J Med Food 17:206–217

    Article  CAS  PubMed  Google Scholar 

  6. Malig TC, Ashkin MR, Burman AL, Barday M, Heyne BJ, Back TG (2017) Comparison of free-radical inhibiting antioxidant properties of carvedilol and its phenolic metabolites. Med Chem Comm 8:606–615

    Article  CAS  Google Scholar 

  7. Ren F, Reilly K, Kerry JP, Gaffney M, Hossain M, Rai DK (2017) Higher antioxidant activity, total flavonols, and specific quercetin glucosides in two different onion (Allium cepa L.) varieties grown under organic production: Results from a 6-year field study. J Agric Fodd Chem 65:5122–5132

    Article  CAS  Google Scholar 

  8. de Souza GLC, de Oliveira LMF, Vicari RG, Brown A (2016) A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(13) linkage flavonols. J Mol Model 22:100–109

    Article  CAS  PubMed  Google Scholar 

  9. Guajardo-Flores D, Serna-Saldivar SO, Gutiérrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.) Food Chem 141:1497– 1503

    Article  CAS  PubMed  Google Scholar 

  10. Mendes RA, e Silva BLS, Takeara R, Freitas RG, Brown A, de Souza GLC (2018) Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J Mol Model 24:101

    Article  CAS  PubMed  Google Scholar 

  11. Mendes RA, Almeida SKC, Soares IN, Barboza CA, Freitas RG, Brown A, de Souza GLC (2018) A computational investigation on the antioxidant potential of myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside. Mol Model 24:133

    Article  CAS  Google Scholar 

  12. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  13. Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:92–96

    Article  CAS  Google Scholar 

  14. Cai W, Chen Y, Xie L, Zhang H, Hou C (2014) Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues. Eur Food Res Technol 238:121–128

    Article  CAS  Google Scholar 

  15. Zheng Y-Z, deng G, Liang Q, Chen D-F, Lai R-C (2017) Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Sci Rep 7:7543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guitard R, Nardello-Rataj V, Aubry J-M (2016) Theoretical and kinetic tools for selecting effective antioxidants: Application to the protection of omega-3 oils with natural and synthetic phenols. Int J Mol Sci 17:1220

    Article  CAS  PubMed Central  Google Scholar 

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  20. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  22. Justino GC, Vieira AJSC (2010) Antioxidant mechanisms of quercetin and myricetin in the gas phase and in solution—a comparison and validation of semi-empirical methods. J Mol Model 16:863–876

    Article  CAS  PubMed  Google Scholar 

  23. Mohajeri A, Asemani SS (2009) Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J Mol Struct 930:15–20

    Article  CAS  Google Scholar 

  24. Sadasivam K, Kumaresan R (2011) Antioxidant behavior of mearnsetin and myricetin flavonoid compounds—a DFT study. Spectrochim Acta A 79:282–293

    Article  CAS  Google Scholar 

  25. Nenadis N, Sigalas MP (2008) A DFT study on the radical scavenging activity of maritimetin and related aurones. J Phys Chem A 112:12196–12202

    Article  CAS  PubMed  Google Scholar 

  26. Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem Anal 13:9–17

    Article  CAS  Google Scholar 

  27. Bran-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  Google Scholar 

  28. Trouillas P, Marsal P, Svobovova A, Vostalova J, Gazak R, Hbrac J, Sedmera P, Kren V, Lazzaroni R, Duroux J-L, Walterova D (2008) Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J Phys Chem A 112:1054–1063

    Article  CAS  PubMed  Google Scholar 

  29. Fezai R, Mezni A, Rzaigui M (2018) Synthesis, structural analysis, Hirshfeld surface, spectroscopic characterization and, in vitro, antioxidant activity of a novel organic cyclohexaphosphate. J Mol Struct 1154:64–71

    Article  CAS  Google Scholar 

  30. Yang W, Fortunati E, Bertoglio F, Owczarek JS, Bruni G, Kozanecki M, Kenny JM, Torre L, Visai L, Puglia D (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284

    Article  CAS  PubMed  Google Scholar 

  31. Adilah ZAM, Jamilah B, Hanani ZAN (2018) Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll 74:207–218

    Article  CAS  Google Scholar 

  32. Nantitanon W, Okonogi S (2012) Comparison of antioxidant activity of compounds isolated from guava leaves and a stability study of the most active compound. Drug Discov Ther 6:38–43

    CAS  PubMed  Google Scholar 

  33. De Martino L, Mencherini T, Mancini E, Aquino RP, De Almeida LFR, De Feo V (2012) In vitro phytotoxicity and antioxidant activity of selected flavonoids. Int J Mol Sci 13:5406–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones RS, Parker MD, Morris ME (2017) Quercetin, morin, luteolin, and phloretin are dietary flavonoid inhibitors of monocarboxylate transporter 6. Mol Pharmaceutics 14:2930–2936

    Article  CAS  Google Scholar 

  35. Ricardo KFS, de Oliveira TT, Nagem TJ, Pinto AS, Oliveira MGA, Soares JF (2001) Effect of flavonoids morin; quercetin and nicotinic acid on lipid metabolism of rats experimentally fed with triton. Braz Arch Biol Technol 44:263–267

    Article  CAS  Google Scholar 

  36. Rassolov V, Pople JA, Ratner M, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  37. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–946

    Article  CAS  Google Scholar 

  38. Vagánek A, Rimarčik J, Lukeš V, Klein E (2012) On the energetics of homolytic and heterolytic O–H bond cleavage in flavonols. Comput Theor Chem 991:192–200

    Article  CAS  Google Scholar 

  39. Rajaraman D, Sundararajan G, Rajkumar R, Bharanidharan S, Krishnasamy K (2016) Synthesis, crystal structure investigation, DFT studies and DPPH radical scavenging activity of 1-(furan-2-ylmethyl)-2,4,5-triphenyl-1H-imidazole derivatives. J Mol Struct 1108:698–707

    Article  CAS  Google Scholar 

  40. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  CAS  PubMed  Google Scholar 

  41. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  42. Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  43. Miliauskas G, Venskutonis PR, van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  44. Kumaran A, Karunakaran RJ (2007) In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT - Food Sci Technol 40:344–352

    Article  CAS  Google Scholar 

  45. Sharma S, Vig AP (2013) Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. Laves Sci World J 2013:604865

    Google Scholar 

  46. Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S (2012) Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac J Trop Biomed 2:960– 965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01

  48. Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G (2011) Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 59:10277–10285

    Article  CAS  PubMed  Google Scholar 

  49. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem 97:679–688

    Article  CAS  Google Scholar 

  50. Li M-J, Liu L, Fu Y, Guo Q-X (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J Mol Struct THEOCHEM 815:1–9

    Article  CAS  Google Scholar 

  51. Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2007) DFT Study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. J Agric Food Chem 55:903–911

    Article  CAS  PubMed  Google Scholar 

  52. Amić D, Stepanić W, Lučić R, Marković Z, Dmitrić Marković J M (2013) PM6 study of free radical scavenging mechanisms of flavonoids: Why does OH bond dissociation enthalpy effectively represent free radical scavenging activity. J Mol Model 19:2593–2603

    Article  CAS  PubMed  Google Scholar 

  53. Marković Z, Milenković D, Dorović J, Marković JMD, Stepanić V, Lucić B, Amić D (2012) PM6 and DFT study of free radical scavenging activity of morin. Food Chem 134:1754–1760

    Article  CAS  PubMed  Google Scholar 

  54. Pérez-González A, Rebollar-Zepeda AM, Léon-Carmona JR, Galano A (2012) Reactivity indexes and O-H bond dissociation energies of a large series of polyphenols: implications for their free radical scavenging activity. J Mex Chem Soc 56:241–249

    Google Scholar 

  55. Islam N (2015) Investigation of comparative shielding of morin against oxidative damage by radicals: A DFT study. Cogent Chem 1:1078272–1–1078272-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

First of all, “Fora Temer!”. The Brazilian agency CNPq funded this work (Process number: 306266/2016-4). The authors thank Prof. Alex Brown from Department of Chemistry at University of Alberta for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. C. de Souza.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.92 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, E.N., Almeida, S.K.C., da Silva, S.C. et al. Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 24, 218 (2018). https://doi.org/10.1007/s00894-018-3745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3745-1

Keywords

Navigation