Skip to main content
Log in

A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1 → 3) linkage flavonols

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a computational study on two flavonols that were recently isolated from Loranthaceae family plant extracts: kaempferol 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside and quercetin 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside. Their structures and energetics have been investigated at the density functional level of theory, up to B3LYP/6-31+G(d,p), incorporating solvent effects with polarizable continuum models. In addition, their potential antioxidant activities were probed through the computation of the (i) bond dissociation enthalpies (BDEs), which are related to the hydrogen-atom transfer mechanism (HAT), and (ii) ionization potentials (IPs), which are related to the single-electron transfer mechanism (SET). The BDEs were determined in water to be 83.23 kcal/mol for kaempferol 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside and 77.49 kcal/mol for quercetin 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside. The corresponding IPs were obtained for both compounds as 133.38 and 130.99 kcal/mol, respectively. The BDEs and IPs are comparable to those probed for their parental molecules kaempferol and quercetin; this is in marked contrast to previous studies where glycosylation at the 3-position increases the corresponding BDEs, and, hence, decreases subsequent antioxidant activity. The BDEs and IPs obtained suggest both compounds are promising for antioxidant activity and thus further experimental tests are encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guajardo-Flores D, Serna-Saldivar SO, Gutiėrrez-Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.) Food Chem 141:1497– 1503

    Article  CAS  Google Scholar 

  2. Plaza M, Kariuki J, Turner C (2014) Quantification of individual phenolic compounds contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem 62:409–418

    Article  CAS  Google Scholar 

  3. Zhang X C, Chen F, Wang MF (2014) Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J Agric Food Chem 62:1643–1648

    Article  CAS  Google Scholar 

  4. Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G (2011) Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 59:10277–10285

    Article  CAS  Google Scholar 

  5. Belščak-Cvitanović A, Durgo K, Bušić A, Franekić J, Komes D (2014) Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (HEp2) cells. J Med Food 17:206–217

    Article  Google Scholar 

  6. Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  Google Scholar 

  7. Huang DJ, Ou BX, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  8. Pérez-González A, Rebollar-Zepeda AM, Léon-Carmona JR, Galano A (2012) Reactivity indexes and O-H bond dissociation energies of a large series of polyphenols: implications for their free radical scavenging activity. J Mex Chem Soc 56:241–249

    Google Scholar 

  9. Burton G W, Ingold K U (1986) Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19:194–201

    Article  CAS  Google Scholar 

  10. Miller AJ (1996) Antioxidant flavonoids: structure, function, and clinical usage. Altern Med Rev 1:103–111

    Google Scholar 

  11. Skaper SD, Fabris M, Ferrari V, Carbonare MD, Leon A (1997) Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radic Biol Med 22:669–678

    Article  CAS  Google Scholar 

  12. Kim HP, Mani I, Iversen L, Ziboh VA (1998) Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandins Leukot Essent Fatty Acids 58:17–24

    Article  CAS  Google Scholar 

  13. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

  14. Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 108:92–96

    Article  CAS  Google Scholar 

  15. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

  16. Leopoldini M, Marino T, Russo N, Toscano M (2004) Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  17. Nenadis N, Sigalas MP (2008) A DFT study on the radical scavenging activity of maritimetin and related aurones. J Phys Chem A 112:12196–12202

    Article  CAS  Google Scholar 

  18. Stepanić V, Troselj KG, Lucić B, Marković Z, Amić D (2013) Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 141:1562–1570

    Article  Google Scholar 

  19. Wright JS, Carpenter DJ, McKay DJ, Ingold KU (1997) Theoretical calculation of substituent effects on the O-H bond strength of phenolic antioxidants related to vitamin E. J Am Chem Soc 119:4245–4252

    Article  CAS  Google Scholar 

  20. Brinck T, Lee H-N, Jonsson M (1999) Quantum chemical studies on the thermochemistry of alkyl and peroxyl radicals. J Phys Chem A 103:7094–7104

    Article  CAS  Google Scholar 

  21. Gomes JRB, da Silva MAVR (2003) Gas-phase thermodynamic properties of dichlorophenols determined from density functional theory calculations. J Phys Chem A 107:869–874

    Article  CAS  Google Scholar 

  22. Vagánek A, Rimarčik J, Lukeš V, Klein E (2012) On the energetics of homolytic and heterolytic O–H bond cleavage in flavonols. Comput Theor Chem 991:192–200

    Article  Google Scholar 

  23. Vagánek A, Rimarčik J, Dropkova K, Lengyel J, Klein E (2014) Reaction enthalpies of O–H bonds splitting-off in flavonoids: the role of non-polar and polar solvent. Comput Theor Chem 1050:31–38

    Article  Google Scholar 

  24. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97:679–688

    Article  CAS  Google Scholar 

  25. Amić D, Stepanić W, Lučić R, Marković Z, Dmitrić Marković JM (2013) PM6 study of free radical scavenging mechanisms of flavonoids: why does OH bond dissociation enthalpy effectively represent free radical scavenging activity. J Mol Model 19:2593–2603

    Article  Google Scholar 

  26. Justino GC, Vieira AJSC (2010) Antioxidant mechanisms of quercetin and myrcetin in the gas phase and in solution—a comparison and validation of semi-empirical methods. J Mol Model 16:863–876

    Article  CAS  Google Scholar 

  27. Antonczak A (2008) Electronic description of four flavonoids revisited by DFT method. J Mol Struct: Theochem 856:38–45

    Article  CAS  Google Scholar 

  28. Li M-J, Liu L, Fu Y, Guo Q-X (2007) Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J Mol Struct: Theochem 815:1–9

    Article  CAS  Google Scholar 

  29. Lengyel J, Rimarčik J, Vagánek A, Klein E (2013) On the radical scavenging activity of isoflavones: thermodynamics of O–H bond cleavage. Phys Chem Chem Phys 15:10895– 10903

    Article  CAS  Google Scholar 

  30. Cai W, Chen Y, Xie L, Zhang H, Hou C (2014) Characterization and density functional theory study of the antioxidant activity of quercetins and its sugar-containing analogues. Eur Food Res Technol 238:121–128

    Article  CAS  Google Scholar 

  31. Lespade L, Bersion S (2012) Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids. Free Radic Res 46:346–358

    Article  CAS  Google Scholar 

  32. Deepha V, Praveena R, Sivakumar R, Sadasivam K (2014) Experimental and theoretical investigations on the antioxidant activity of isoorientin from Crotalaria globosa. Spectrochim Acta A 121:737–745

    Article  CAS  Google Scholar 

  33. Mohajeri A, Asemani SS (2009) Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J Mol Struct 930:15–20

    Article  CAS  Google Scholar 

  34. Praveena R, Sadasivam K, Kumaresan R, Deepha V, Sivakumar R (2013) Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta A 103:442–452

    Article  CAS  Google Scholar 

  35. Rong YZ, Wang ZW, Zhao B (2013) A DFT study on the structural and antioxidant properties of three flavonols. Food Biophys 8:90–94

    Article  Google Scholar 

  36. Guimarães AC, Magalhães A, Nakamura MJ, Siani AC, Barja-Fidalgo C, Sampaio ALF (2012) Flavonoids bearing an O-arabinofuranosyl-(1 → 3)-rhamnoside moiety from Cladocolea micrantha: inhibitory effect on human melanoma cells. Nat Prod Commun 7:1311–1314

    Google Scholar 

  37. Amer B, Juvik OJ, Francis GW, Fossen T (2013) Novel GHB-derived natural products from European mistletoe (Viscum album). Pharm Bio 51:981–986

    Article  CAS  Google Scholar 

  38. Awaad AS, Govil JN, Singh VK (2010). Drug plants I: recent progress in medicinal plants 27:1–31

    CAS  Google Scholar 

  39. Kültür S (2007) Medicinal plants used in Kirklareli Province (Turkey). J Ethnopharmacol 111:341–364

    Article  Google Scholar 

  40. Obatomi DK, Bikomo EO, Temple VJ (1994) Anti-diabetic properties of the African mistletoe in streptozotocin-induced diabetic rats. J Ethnopharmacol 43:13–17

    Article  CAS  Google Scholar 

  41. Cai Y-Z, Suo M, Xing J, Luo Q, Corke H (2006) Structure-radical scavenging activity relationship of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78:2872–2888

    Article  CAS  Google Scholar 

  42. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  45. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  46. Rassolov V, Pople JA, Ratner M, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  47. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–946

    Article  CAS  Google Scholar 

  48. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  49. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  50. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  Google Scholar 

  51. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  52. Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation and numerical applications. J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  54. Conard JP, Boudet AC, Merlin JC (1999) Theoretical investigation of the molecular structure of the isoquercetin molecule. J Mol Struct 508:37–49

    Article  Google Scholar 

  55. Filip X, Filip C (2015) Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of quercetin solid forms. Sol State NMR 65:21–28

    Article  CAS  Google Scholar 

  56. Kalita D, Kar R, Handique JG (2012) A theoretical study on the antioxidant property of gallic acid and its derivatives. J Theo Comp Chem 11:391–402

    Article  CAS  Google Scholar 

  57. Paya M, Goodwin PA, De las Heras B, Hoult JRS (1994) Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins. Biochem Pharmacol 48:445– 451

    Article  CAS  Google Scholar 

  58. Souza LP, Calegari F, Zarbin AJG, Marcolino-Júnior LH, Bergamini MF (2011) Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J Agric Food Chem 59:7620–7625

    Article  CAS  Google Scholar 

  59. Hernández-Herrero JA, Frutos M J (2014) Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem 154:199–204

    Article  Google Scholar 

Download references

Acknowledgments

Gabriel L. C. de Souza thanks Dr. Anderson Cavalcante Guimarães from the Instituto de Ciências Exatas e Tecnologia at Universidade Federal do Amazonas (ICET-UFAM) for useful discussions and Dr. Sebastião Claudino da Silva from the Departamento de Química at Universidade Federal de Mato Grosso for providing part of the computational resources utilized. This work was partially funded by the Brazilian agencies CAPES (Process number: 1842-13-7) and CNPq (Process number: 305423/2013-4). A. Brown thanks the Natural Sciences and Engineering Research Council of Canada for funding (NSERC - Discovery Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. C. de Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.07 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, G.L.C., de Oliveira, L.M.F., Vicari, R.G. et al. A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1 → 3) linkage flavonols. J Mol Model 22, 100 (2016). https://doi.org/10.1007/s00894-016-2961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2961-9

Keywords

Navigation