Skip to main content
Log in

Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO2 and PANI-C6H5 as promising materials for the development of improved chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baraton MI, Organization NAT (eds) (2009) Sensors for environment, health and security: advanced materials and technologies. NATO science for peace and security series. Series C, Environmental security. Springer, Dordrecht

  2. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) Sensors 12(12):9635. https://doi.org/10.3390/s120709635

    Article  CAS  PubMed  Google Scholar 

  3. Adhikari B, Majumdar S (2004) Prog Polym Sci 29(7):699. https://doi.org/10.1016/j.progpolymsci.2004.03.002

    Article  CAS  Google Scholar 

  4. Jin Z, Su Y, Duan Y (2001) Sensors Actuators B Chem 72(1):75. https://doi.org/10.1016/S0925-4005(00)00636-5

    Article  CAS  Google Scholar 

  5. Haynes A, Gouma PI (2009). In: Baraton M.I. (ed) Sensors for Envi- ronment, Health and Security. Springer, Netherlands, pp 451–459

  6. Crowley K, Smyth MR, Killard AJ, Morrin A (2012) Chem Pap 67(8):771. https://doi.org/10.2478/s11696-012-0301-9

    Google Scholar 

  7. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Sensors Actuators B Chem 178:485. https://doi.org/10.1016/j.snb.2013.01.014

    Article  CAS  Google Scholar 

  8. Sengupta PP, Barik S, Adhikari B (2006) Mater Manuf Process 21 (3):263. https://doi.org/10.1080/10426910500464602

    Article  CAS  Google Scholar 

  9. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Sensors Actuators B Chem 220:534. https://doi.org/10.1016/j.snb.2015.05.107

    Article  CAS  Google Scholar 

  10. Crowley K, Morrin A, Shepherd RL, in het Panhuis M, Wallace GG, Smyth MR, Killard AJ (2010) IEEE Sensors J 10(9):1419. https://doi.org/10.1109/JSEN.2010.2044996

    Article  CAS  Google Scholar 

  11. Pawar SG, Chougule MA, Sen S, Patil VB (2012) J Appl Polym Sci 125(2):1418. https://doi.org/10.1002/app.35468

    Article  CAS  Google Scholar 

  12. Syed AA, Dinesan MK (1991) Talanta 38(8):815. https://doi.org/10.1016/0039-9140(91)80261-W

    Article  CAS  PubMed  Google Scholar 

  13. Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35(12):1420. https://doi.org/10.1016/j.progpolymsci.2010.07.006

    Article  CAS  Google Scholar 

  14. Tousek J, Tousková J, Chomutová R, Krivka I, Hajná M, Stejskal J (2017) Synth Met 234:161. https://doi.org/10.1016/j.synthmet.2017.10.015

    Article  CAS  Google Scholar 

  15. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34 (8):783. https://doi.org/10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  16. Boeva ZA, Sergeyev VG (2014) Polym Sci Ser C 56(1):144. https://doi.org/10.1134/S1811238214010032

    Article  CAS  Google Scholar 

  17. D’Aprano G, Leclerc M, Zotti G, Schiavon G (1995) Chem Mater 7(1):33. https://doi.org/10.1021/cm00049a008

    Article  Google Scholar 

  18. Bavastrello V, Correia Terencio TB, Nicolini C (2011) Polymer 52(1):46. https://doi.org/10.1016/j.polymer.2010.10.022

    Article  CAS  Google Scholar 

  19. Jaymand M (2013) Prog Polym Sci 38(9):1287. https://doi.org/10.1016/j.progpolymsci.2013.05.015

    Article  CAS  Google Scholar 

  20. Manohar S, Macdiarmid A, Cromack K, Ginder J, Epstein A (1989) Synth Met 29(1):349. https://doi.org/10.1016/0379-6779(89)90317-2

    Article  Google Scholar 

  21. Langer JJ (1990) Synth Met 35 (3):295. https://doi.org/10.1016/0379-6779(90)90213-5

    Article  CAS  Google Scholar 

  22. Chevalier JW, Bergeron JY, Dao LH (1992) Macromolecules 25(13):3325. https://doi.org/10.1021/ma00039a001

    Article  CAS  Google Scholar 

  23. Lindfors T, Ivaska A (2002) J Electroanal Chem 531(1):43. https://doi.org/10.1016/S0022-0728(02)01005-7

    Article  CAS  Google Scholar 

  24. Gheybi H, Abbasian M, Moghaddam PN, Entezami AA (2007) J Appl Polym Sci 106(5):3495. https://doi.org/10.1002/app.27037

    Article  CAS  Google Scholar 

  25. Gheybi H, Bagheri M, Alizadeh Z, Entezami AA (2008) Polym Adv Technol 19(8):967. https://doi.org/10.1002/pat.1062

    Article  CAS  Google Scholar 

  26. Tarassi M, Zadehnazari A (2016) J Chil Chem Soc 61(3):3108. https://doi.org/10.4067/S0717-97072016000300020

    Article  Google Scholar 

  27. Lindfors T, Ivaska A (2002) J Electroanal Chem 535(1-2):65. https://doi.org/10.1016/S0022-0728(02)01172-5

    Article  CAS  Google Scholar 

  28. Huang X, McVerry BT, Marambio-Jones C, Wong MCY, Hoek EMV, Kaner RB (2015) J Mater Chem A 3(16):8725. https://doi.org/10.1039/C5TA00900F

    Article  CAS  Google Scholar 

  29. Cataldo F, Maltese P (2002) Eur Polym J 38(9):1791. https://doi.org/10.1016/S0014-3057(02)00070-8

    Article  CAS  Google Scholar 

  30. Carey FA, Sundberg RJ (2007) Advanced organic chemistry: Part A: Structure and mechanisms. Springer Science & Business Media, Berlin

    Google Scholar 

  31. Stewart JJP (2007) J Mol Model 13(12):1173. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stewart JJP (1990) J Comput Aided Mol Des 4(1):1. https://doi.org/10.1007/BF00128336

    Article  PubMed  Google Scholar 

  33. Stewart JJP (2016) MOPAC2016: Molecular orbital package. http://openmopac.net

  34. de Oliveira ZT, dos Santos M (2000) Chem Phys 260(1-2):95. https://doi.org/10.1016/S0301-0104(00)00209-3

    Article  Google Scholar 

  35. Batagin-Neto A, Oliveira EF, Graeff CF, Lavarda FC (2013) Mol Simul 39(4):309. https://doi.org/10.1080/08927022.2012.724174

    Article  CAS  Google Scholar 

  36. Oliveira EF, Lavarda FC (2017) Mol Simul 43(18):1496. https://doi.org/10.1080/08927022.2017.1321759

    Article  CAS  Google Scholar 

  37. Yang W, Mortier WJ (1986) J Am Chem Soc 108(19):5708. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  38. Mineva. T (2006) Journal of Molecular Structure: THEOCHEM 762(1-3). https://doi.org/10.1016/j.theochem.2005.08.044

  39. Bronze-Uhle ES, Batagin-Neto A, Lavarda FC, Graeff CFO (2011) J Appl Phys 110(7):073510. https://doi.org/10.1063/1.3644946

    Article  CAS  Google Scholar 

  40. Batagin-Neto A, Bronze-Uhle E, Vismara M, Assis A, Castro F, Geiger T, Lavarda F, Graeff C (2013) Current Phys Chem 3(4):431. https://doi.org/10.2174/18779468113036660026

    Article  CAS  Google Scholar 

  41. Cesarino I, Simões R.P., Lavarda FC, Batagin-Neto A (2016) Electrochim Acta 192:8. https://doi.org/10.1016/j.electacta.2016.01.178

    Article  CAS  Google Scholar 

  42. Martins LM, Vieira SF, Baldacim GB, Bregadiolli BA, Caraschi JC, Batagin-Neto A, Silva-Filho LC (2018) Dyes Pigments 148:81. https://doi.org/10.1016/j.dyepig.2017.08.056

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09

  44. Roy RK, Pal S, Hirao K (1999) J Chem Phys 110(17):8236. https://doi.org/10.1063/1.478792

    Article  CAS  Google Scholar 

  45. de Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23 (12):1198. https://doi.org/10.1002/jcc.10067

    Article  CAS  PubMed  Google Scholar 

  46. Virji S, Kaner RB, Weiller BH (2006) J Phys Chem B 110(44):22266. https://doi.org/10.1021/jp063166g

    Article  CAS  PubMed  Google Scholar 

  47. Shirsat MD, Bangar MA, Deshusses MA, Myung NV, Mulchandani A (2009) Appl Phys Lett 94 (8):083502. https://doi.org/10.1063/1.3070237

    Article  CAS  Google Scholar 

  48. Lim JH, Phiboolsirichit N, Mubeen S, Deshusses MA, Mulchandani A, Myung NV (2010) Nanotechnology 21(7):075502. https://doi.org/10.1088/0957-4484/21/7/075502

    Article  CAS  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  50. Gans JD, Shalloway D (2001) J Mol Graph Model 19(6):557. https://doi.org/10.1016/S1093-3263(01)00090-0

    Article  CAS  PubMed  Google Scholar 

  51. Vincent MA, Hillier IH (2014) J Chem Inf Model 54(8):2255. https://doi.org/10.1021/ci5003729

    Article  CAS  PubMed  Google Scholar 

  52. Daniel CRA, Rodrigues NM, da Costa NB, Freire RO (2015) J Phys Chem C 119(41):23398. https://doi.org/10.1021/acs.jpcc.5b05599

    Article  CAS  Google Scholar 

  53. Takimiya K, Osaka I, Nakano M (2014) Chem Mater 26(1):587. https://doi.org/10.1021/cm4021063

    Article  CAS  Google Scholar 

  54. Shokuhi Rad A, Ghasemi Ateni S, Tayebi HA, Valipour P, Pouralijan Foukolaei V (2016) Journal of Sulfur Chemistry, 1–10. https://doi.org/10.1080/17415993.2016.1170834

  55. Yang LY, Liau WB (2009) Mater Chem Phys 115(1):28. https://doi.org/10.1016/j.matchemphys.2008.10.074

    Article  CAS  Google Scholar 

  56. Liu SS, Bian LJ, Luan F, Sun MT, Liu XX (2012) Synth Met 162(9-10):862. https://doi.org/10.1016/j.synthmet.2012.03.015

    Article  CAS  Google Scholar 

  57. Timofeeva O, Lubentsov B, Sudakova Y, Chernyshov D, Khidekel’ M. (1991) Synth Met 40 (1):111. https://doi.org/10.1016/0379-6779(91)91493-T

    Article  CAS  Google Scholar 

  58. Lubentsov B, Timofeeva O, Khidekel’ M. (1991) Synth Met 45(2):235. https://doi.org/10.1016/0379-6779(91)91808-N

    Article  CAS  Google Scholar 

  59. Ullah H, Shah AHA, Bilal S, Ayub K (2013) J Phys Chem C 117 (45):23701. https://doi.org/10.1021/jp407132c

    Article  CAS  Google Scholar 

  60. Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau-Truong S, Mahmoud R, Chehimi MM, Aswal DK, Gupta SK (2014) Org Electron 15(1):71. https://doi.org/10.1016/j.orgel.2013.10.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies FAPESP (Proc. 2016/05954-0) and CNPq (Proc. 448310/2014-7) for the financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Batagin-Neto.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 16.0 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandú, L.O., Batagin-Neto, A. Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations. J Mol Model 24, 157 (2018). https://doi.org/10.1007/s00894-018-3660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3660-5

Keywords

Navigation