Skip to main content
Log in

Investigation of the interactions between 1-butyl-3-methylimidazolium-based ionic liquids and isobutylene using density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To identify ionic liquids (ILs) that could be used as solvents in isobutylene (IB) polymerization, the interactions between IB and eight different ILs based on the 1-butyl-3-methylimidazolium cation ([Bmim]+) were investigated using density functional theory (DFT). The anions in the ILs were chloride, hexafluorophosphate, tetrafluoroborate, bis[(trifluoromethyl)sulfonyl]imide, tetrachloroaluminate ([AlCl4]), tetrachloroferrate, acetate, and trifluoroacetate. The interaction geometries were explained by changes in the total energy, intermolecular distances, Hirshfeld charges, and the electrostatic potential surface. The IL solvents were screened by comparing their interaction intensities with IB to the interaction intensities of reference ILs ([AlCl4]-based ILs) with IB. The microscopic mechanism for IB dissolution was rationalized by invoking a previously reported microscopic mechanism for the dissolution of gases in ILs. Computation results revealed that hydrogen (H) bonding between C2–H on the imidazolium ring and the anions plays a key role in ion pair (IP) formation. The addition of IB leads to slight changes in the dominant interactions of the IP. IB molecules occupied cavities created by small angular rearrangements of the anions, just as CO2 does when it is dissolved in an IL. The limited total free space in the ILs and the much larger size of IB than CO2 were found to be responsible for the poor solubility of IB compared with that of CO2 in the ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2a–h
Fig. 3a–j
Scheme 1
Fig. 4
Fig. 5
Fig. 6a–h
Fig. 7

Similar content being viewed by others

References

  1. Mallakpour S, Rafiee Z (2011) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, part I. J Polym Environ 19:447–484. https://doi.org/10.1007/s10924-011-0287-3

  2. Mallakpour S, Rafiee Z (2011) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, part II. J Polym Environ 19:485–517. https://doi.org/10.1007/s10924-011-0291-7

  3. Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12. https://doi.org/10.1016/j.cplett.2016.07.044

    Article  CAS  Google Scholar 

  4. Kubisa P (2009) Ionic liquids as solvents for polymerization processes—progress and challenges. Prog Polym Sci 34:1333–1347. https://doi.org/10.1016/j.progpolymsci.2009.09.001

    Article  CAS  Google Scholar 

  5. Dyson PJ, Geldbach TJ (2007) Applications of ionic liquids in synthesis and catalysis. Electrochem Soc Interf 16:50–53. https://doi.org/10.1002/chin.200849267

    CAS  Google Scholar 

  6. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

  7. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56. https://doi.org/10.1016/j.apcata.2009.10.008

    Article  CAS  Google Scholar 

  8. Gilbert B, Olivier-Bourbigou H, Favre F (2007) Chloroaluminate ionic liquids: from their structural properties to their applications in process intensification. Oil Gas Sci Technol 62:745–759. https://doi.org/10.2516/ogst:2007068

  9. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t

    Article  CAS  Google Scholar 

  10. Nasirov FA, Novruzova FM, Aslanbeili AM, Azizov AG (2007) Ionic liquids in catalytic processes of transformation of olefins and dienes (review). Pet Chem 47:309. https://doi.org/10.1134/S0965544107050015

    Article  Google Scholar 

  11. Fredlake CP, Muldoon MJ, Aki SNVK, Welton T, Brennecke JF (2004) Solvent strength of ionic liquid/CO2 mixtures. Phys Chem Chem Phys 6:3280–3285. https://doi.org/10.1039/B400815D

  12. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2014) Ionic liquids for thiols desulfurization: experimental liquid–liquid equilibrium and COSMO-RS description. Fuel 128:314–329. https://doi.org/10.1016/j.fuel.2014.03.020

    Article  CAS  Google Scholar 

  13. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448. https://doi.org/10.1016/j.progpolymsci.2008.12.001

    Article  CAS  Google Scholar 

  14. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem 13:2489–2499. https://doi.org/10.1039/C1GC15374A

    Article  CAS  Google Scholar 

  15. Foroutana M, Fatemi SM, Farshad E (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19. https://doi.org/10.1140/epje/i2017-11507-7

    Article  Google Scholar 

  16. Vijayaraghavan R, Macfarlaned R (2012) Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids. Sci China Chem 55:1671–1676. https://doi.org/10.1007/s11426-012-4658-y

    Article  CAS  Google Scholar 

  17. Zhang XQ, Guo WL, Wu YB, Gong LF, Li W, Li XN, Li SX, Shang YW, Yang D, Wang H (2016) Cationic polymerization of p-methylstyrene in selected ionic liquids and polymerization mechanism. Polym Chem 7:5099–5122. https://doi.org/10.1039/c6py00796a

  18. Wu YB, Han LU, Zhang XQ, Mao J, Gong LF, Guo WL, Gu K, Li SX (2015) Cationic polymerization of isobutyl vinyl ether in an imidazole-based ionic liquid: characteristics and mechanism. Polym Chem 6:2560–2568. https://doi.org/10.1039/C4PY01784F

  19. Yoshimitsu H, Kanazawa A, Kanaoka S, Aoshima S (2016) Cationic polymerization of vinyl ethers with alkyl or ionic side groups in ionic liquids. J Polym Sci A Polym Chem 54:1774–1784. https://doi.org/10.1002/pola.28039

    Article  CAS  Google Scholar 

  20. Einloft S, Dietrich FK, DE Souza RF, Dupont J (1996) Selective two-phase catalytic ethylene dimerization by NiII complexes/AlEtCl2 dissolved in organoaluminate ionic liquids. Polyhedron 15:3257–3259

  21. Wasserscheid P, Eichmann M (2001) Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents—design and application of a continuous loop reactor. Catal Today 66:309–316. https://doi.org/10.1016/S0920-5861(00)00617-9

  22. Wasserscheida P, Hilgers C, Keim W (2004) Ionic liquids—weakly-coordinating solvents for the biphasic ethylene oligomerization to α-olefins using cationic Ni-complexes. J Mol Catal A Chem 214:83–90. https://doi.org/10.1016/j.molcata.2003.11.032

    Article  Google Scholar 

  23. Murphy V (2000) Ionic liquids and process for production of high molecular weight polyisoolefins. Patent WO20000032658 A1

  24. Yang SQ, Liu ZC, Meng XH, Xu CM (2009) Oligomerization of isobutene catalyzed by iron(III) chloride ionic liquids. Energy Fuel 23:70–73. https://doi.org/10.1021/ef800687a

    Article  CAS  Google Scholar 

  25. Magna L, Bildé J, Olivier-Bourbigou H, Robert T, Gilbert B (2009) About the acidity catalytic activity relationship in ionic liquids: application to the selective isobutene dimerization. Oil Gas Sci Technol 64:669–679. https://doi.org/10.2516/ogst/2009041

  26. Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775. https://doi.org/10.1002/chem.200600103

  27. Zhou JX, Mao JB, Zhang SG (2008) Ab initio calculations of the interaction between thiophene and ionic liquids. Fuel Process Technol 89:1456–1460. https://doi.org/10.1016/j.fuproc.2008.07.006

    Article  CAS  Google Scholar 

  28. Anantharaj R, Banerjee T (2011) Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids. AICHE J 57(3):749–764. https://doi.org/10.1002/aic.12281

  29. Dai YF, Qu YX, Wang S, Wang JD (2014) Theoretical study on the interactions between ionic liquid and solute molecules for typical separation problems. Chem Phys Lett 608:366–372. https://doi.org/10.1016/j.cplett.2014.03.008

    Article  CAS  Google Scholar 

  30. Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(49):12807–12813. https://doi.org/10.1021/jp0267003

  31. Pádua AAH, Gomes MFC, Lopes JNAC (2007) Molecular solutes in ionic liquids: a structural perspective. Acc Chem Res 40(11):1087–1096. https://doi.org/10.1021/ar700050q

  32. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:8–5300. https://doi.org/10.1021/ja039615x

    Article  Google Scholar 

  33. Huang X, Margulis CJ, Li Y et al (2005) Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? J Am Chem Soc 127:17842–17851. https://doi.org/10.1021/ja055315z

  34. Hu YF, Liu ZC, Xu CM, Zhang XM (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40:3802–3823. https://doi.org/10.1039/C0CS00006J

    Article  CAS  Google Scholar 

  35. Wang YT, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193. https://doi.org/10.1021/ja053796g

    Article  CAS  Google Scholar 

  36. Shah JK, Brennecke JF, Maginn EJ (2002) Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations. Green Chem 4(2):112–118. https://doi.org/10.1039/b110725a

  37. Prasad BR, Senapati S (2009) Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. J Phys Chem B 113:4739–4743. https://doi.org/10.1021/jp805249h

    Article  CAS  Google Scholar 

  38. Li HP, Zhu WS, Chang YH, Jiang W, Zhang M, Yin S, Xia JX, Li HM (2015) Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM]+[FeCl4] ionic liquid in desulfurization: a novel charge transfer mechanism. J Mol Graph Model 59:40–49. https://doi.org/10.1016/j.jmgm.2015.03.007

    Article  CAS  Google Scholar 

  39. Martínez-Magadán JM, Oviedo-Roa R, García P, Martínez-Paloua R (2012) DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline. Fuel Process Technol 97:24–29. https://doi.org/10.1016/j.fuproc.2012.01.007

    Article  Google Scholar 

  40. Lu R, Liu D, Lu YK, Lin J (2013) Electronic and topological properties of interactions between imidazolium-based ionic liquids and thiophenic compounds: a theoretical investigation. J Iran Chem Soc 10:733–744. https://doi.org/10.1007/s13738-012-0207-z

    Article  Google Scholar 

  41. Zhou JX, Zhang YC, Guo XW, Song WJ, Bai HL, Zhang AF (2006) Removal of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approach. Energy Fuel 20:778–782. https://doi.org/10.1021/ef050182o

    Article  Google Scholar 

  42. Li HY, Lu YX, Wu WH, Liu YT, Peng CJ, Liu HL, Zhu WL (2013) Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications. Phys Chem Chem Phys 15:4405–4414. https://doi.org/10.1039/C3CP44649B

    Article  CAS  Google Scholar 

  43. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  44. Delley B (2000) From molecules to solids with the dmol3 approach. J Chem Phys 113:7756–7764. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  45. Accelrys Software Inc. (2011) Materials Studio release notes, release 6.0. Accelrys Software Inc., San Diego

  46. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  47. Morco RP, Musa AY, Wren JC (2014) The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics 258:74–81. https://doi.org/10.1016/j.ssi.2014.02.004

    Article  CAS  Google Scholar 

  48. Castellano O, Gimon R, Soscun H (2011) Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: implications on the resin-asphaltene stability in crude oil. Energy Fuel 25:2526–2541. https://doi.org/10.1021/ef101471t

  49. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66(15):155125. https://doi.org/10.1103/PhysRevB.66.155125

  50. Bultinck P, Alsenoy CV, Ayers PW (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111. https://doi.org/10.1063/1.2715563

    Article  Google Scholar 

  51. Murray JS, Lane P, Brinck T, Politzer P, Sjoberg P (1991) Electrostatic potentials on the molecular surfaces of cyclic ureides. J Phys Chem 95(2):844–848

  52. Inada Y, Orita H (2008) Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J Comput Chem 29:225–232. https://doi.org/10.1002/jcc.20782

    Article  CAS  Google Scholar 

  53. Proft FDE, Alsenoy CV, Peeters A, Langenaeker W, Geerlings P (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209. https://doi.org/10.1002/jcc.10067

  54. Davidson ER, Chakravorty S (1992) A test of the Hirshfeld definition of atomic charges and moments. Theor Chim Acta 83:319–330

    Article  CAS  Google Scholar 

  55. Damme SV, Bultinck P, Fias S (2009) Electrostatic potentials from self-consistent Hirshfeld atomic charges. J Chem Theory Comput 5:334–340. https://doi.org/10.1021/ct800394q

    Article  Google Scholar 

  56. Zhang S, Lu X, Zhou Q, Li XH, Zhang XP, Li SC (2009) Ionic liquids: physicochemical properties. Elsevier, Amsterdam

  57. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

  58. Lopes JNC, Gomes MFC, Pádua AAH (2006) Nonpolar, polar and associating solutes in ionic liquids. J Phys Chem B 110(34):16816–16818. https://doi.org/10.1021/jp063603r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (nos. 51573020, 51373026, 51503019, and 51503019), the Beijing Natural Science Foundation (nos. 2172022 and 2162014), the Beijing Science and Technology Project of the Beijing Municipal Education Commission (KM201710017005), the Undergraduate Training Program (no. 2016-238), and the URT Program (no. 2016J00036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenli Guo or Yibo Wu.

Electronic supplementary material

ESM 1

(DOCX 73 kb)

ESM 2

(DOCX 275 kb)

ESM 3

(DOCX 319 kb)

ESM 4

(DOCX 305 kb)

ESM 5

(DOCX 15 kb)

ESM 6

(DOCX 15 kb)

ESM 7

(DOCX 17 kb)

ESM 8

(DOCX 21 kb)

ESM 9

(DOCX 15 kb)

ESM 10

(DOCX 15 kb)

ESM 11

(DOCX 21 kb)

ESM 12

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Guo, W., Wu, Y. et al. Investigation of the interactions between 1-butyl-3-methylimidazolium-based ionic liquids and isobutylene using density functional theory. J Mol Model 24, 83 (2018). https://doi.org/10.1007/s00894-018-3586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3586-y

Keywords

Navigation