Skip to main content
Log in

Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids

  • Articles
  • Special Issue · Ionic Liquid and Green Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cationic polymerization of styrene has been achieved using several novel acidic initiators in room temperature ionic liquids (ILs) under mild reaction conditions to obtain polymers of low molecular weight with narrow polydispersity. Both strong protic acids such as bis(trifluoromethanesulfonyl) amide acid (HTFSA) and a moderately weak acid such as bisoxalato phosphorous acid (HBOP) have been studied as initiators. It has been observed that HTFSA initiates the polymerization rapidly even at room temperature and below, as compared to HBOP which produces a slower polymerization requiring elevated temperatures to complete. The relative difference in reactivity of the initiators as compared to the previously described HBOB initiator is discussed in terms of the difference in their proton acidity and the consequential basicity of the anions. The efficiency of different ILs as the reaction solvent is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satoh K, Nakashima J, Kamigaito M. Novel BF3OEt2/R-OH initiating system for controlled cationic polymerization of styrene in the presence of water. Macromolecules, 2001, 34: 396–401

    Article  CAS  Google Scholar 

  2. Kiran P, Anuradha V. Free radical polymerization of styrene with p-nitrobenzyl triphenyl phosphonium ylide as an initiator. J Polym Sci Part-A, 2005, 43(24): 6524–6533

    Article  Google Scholar 

  3. Carlotti S, Ménoret S, Desbois P, Nissner N, Warzelhan V, Deffieux A. Sodium hydride/trialkylaluminum complexes for the controlled anionic polymerization of styrene at high temperature. Macromol Rapid Commun, 2006, 27: 905–909

    Article  CAS  Google Scholar 

  4. Juergen S. Effect of impurities on the syndiospecific coordination polymerization of styrene. Macromol Mater & Eng, 2005, 290(8): 833–842

    Article  Google Scholar 

  5. Oh JM, Kang SJ, Kwon OS, Choi SK. Synthesis of ABA triblock copolymers of styrene and P-methylstyrene by living cationic polymerization using the bifunctional initiating system 1,4-bis(1-chloroethyl)benzene/SnCl4 in the presence of 2,6-di-tert-butylpyri-dine. Macromolecules, 1995, 28: 3015–3021

    Article  CAS  Google Scholar 

  6. Hasebe T, Kamigaito M, Swamoto M. Living cationic polymerization of styrene with TiCl3(OiPr) as a Lewis acid activator. Macromolecules, 1996, 29: 6100–6103

    Article  CAS  Google Scholar 

  7. Lin CH, Xiang JS, Matyjaszewski K. Living cationic polymerization of styrene in the presence of tetrabutylammonium salts. Macromolecules, 1993, 26: 2785–2790

    Article  CAS  Google Scholar 

  8. Boodhoo AVK, Dunk WAE, Vicevic M, Jachuck RJ, Sage V, Macquarrie DJ, Clark JH. Classical cationic polymerisation in a novel spinning disc reactor using silica supported BF3 catalyst. J Appl Polym Sci, 2006, 101: 8–19

    Article  CAS  Google Scholar 

  9. Kamigaito M, Nakashima J, Satoh K, Swamoto M. Controlled cationic polymerization of p-(chloromethyl) styrene: BF3-catalyzed selective activation of a C-O terminal from alcohol. Macromolecules, 2003, 36: 3540–3544

    Article  CAS  Google Scholar 

  10. Radchenko AV, Kostjuk, SV, Vasilenko IV, Ganachaud F, Kaputsky FN. Controlled/living cationic polymerization of styrene with BF3OEt2 as a coinitiator in the presence of water: Improvements and limitations. Eur Polym J, 2007, 43: 2576–2583

    Article  CAS  Google Scholar 

  11. Clark JH, Macquarrie DJ. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun, 1998, 853–860

  12. Sage V, Clark JH, Macquarrie DJ. Cationic polymerization of styrene using mesoporous silica supported aluminum chloride. J Mol Catal, 2003, 198: 349–356

    Article  CAS  Google Scholar 

  13. Wilkes JS. A short history of ILs-from molten salts to neoteric solvents. Green Chem, 2002, 4: 73–80

    Article  CAS  Google Scholar 

  14. Wasserscheid P, Welton T. ILs in Synthesis. Wiley, 2003, Weinheim; Wasserscheid and Keim K. ILs — NewSolutions for Transition Metal Catalysis. Angew Chem Int Ed, 2000, 39: 3772–3779

    CAS  Google Scholar 

  15. Ma H, Wan X, Chen X, Zhou QF. Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ILs. J Polym Sci Part A, 2003, 41(1): 143–151

    Article  CAS  Google Scholar 

  16. Hong K, Zhang H, Mays JW, Vissar AE, Brazel CS, Holbrey JD, Reichert WM, Rogers RD. Conventional free radical polymerization in room temperature ILs: A green approach to commodity polymers with practical advantages. Chem Commun, 2002, 13: 1368–1369

    Article  Google Scholar 

  17. Vijayaraghavan R, Surianarayanan M, MacFarlane DR. ILs as moderators in exothermic polymerization reactions. Angew Chem Int Ed, 2004, 43: 5363–5366

    Article  CAS  Google Scholar 

  18. Vijayaraghavan R, MacFarlane DR. Charge transfer polymerization in ILs. Aust J Chem, 2004, 57(2): 129–133

    Article  CAS  Google Scholar 

  19. Basko M, Biedron T, Kubisa P. Polymerization processes in ILs, cationic polymerization of styrene. Macromol Symp, 2006, 240: 107–113

    Article  CAS  Google Scholar 

  20. Vijayaraghavan R, MacFarlane DR. Living cationic polymerization of styrene in an IL. Chem Commun, 2004, 700–701

  21. Vijayaraghavan R, MacFarlane DR. Organoborate acids as initiators for cationic polymerization of styrene in an IL medium. Macromolecules, 2007, 40: 6515–6520

    Article  CAS  Google Scholar 

  22. Forsyth M, Huang J, MacFarlane DR. Lithium doped N-methyl-N-ethylpyrrolidiniumbis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals. J Mater Chem, 2000, 10: 2259–2265

    Article  CAS  Google Scholar 

  23. MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J Phys Chem B, 1999, 103: 4164–4170

    Article  CAS  Google Scholar 

  24. Bonhote P, Dias AP, Papageogiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient temperature molten salts. Inorg Chem, 1996, 35: 1168–1178

    Article  CAS  Google Scholar 

  25. Bradaric C, Downard A, Kennedy C, Robertson A, Zhou Y. Industrial preparation of phosphonium ILs. Green Chem, 2003, 5: 143–152

    Article  CAS  Google Scholar 

  26. MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M. Lewis base ILs. Chem Commun, 2006, 1905–1917

  27. Urakawa O, Swallen SF, Ediger MD, Von Meerwall ED. Self-diffusion and viscosity of low molecular weight styrene over a wide temperature range. Macromolecules, 2004, 37: 1558–1564

    Article  CAS  Google Scholar 

  28. Marechal JM, Carlotti S, Shcheglova L, Deffieux A. Stereoregulation in the anionic polymerization of styrene initiated by superbases. Polymer, 2003, 44: 7601–7607

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Macfarlane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayaraghavan, R., Macfarlane, D.R. Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids. Sci. China Chem. 55, 1671–1676 (2012). https://doi.org/10.1007/s11426-012-4658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4658-y

Keywords

Navigation