Skip to main content
Log in

A theoretical investigation of the interactions between hydroxyl-functionalized ionic liquid and water/methanol/dimethyl sulfoxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional calculations have been used to investigate the interactions of 1-(2-hydroxyethyl)-3-methylimidazolium ([C2OHmim]+)-based ionic liquids (hydroxyl ILs) with water (H2O), methanol (CH3OH), and dimethyl sulfoxide (DMSO). It was found that the cosolvent molecules interact with the anion and cation of each ionic liquid through different atoms, i.e., H and O atoms, respectively. The interactions between the cosolvent molecules and 1-ethyl-3-methylimizolium ([C2mim]+)-based ionic liquids (nonhydroxyl ILs) were also studied for comparison. In the cosolvent–[nonhydroxyl ILs] systems, a furcated H-bond was formed between the O atom of the cosolvent molecule and the C2-H and C6-H, while there were always H-bonds involving the OH group of the cation in the cosolvent–[hydroxyl ILs] systems. Introducing an OH group on the ethyl side of the imidazolium ring may change the order of solubility of the molecular liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Dupont J, Souza DRF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    Article  CAS  Google Scholar 

  3. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. ChemPhysChem 5:1106–1120

  4. Carmichael AJ, Holbrey JD, McCormac PB, Seddon KP (1999) The Heck reaction in ionic liquids: a multiphasic catalyst system. Org Lett 1:997–1000

  5. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  6. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  7. Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    Article  CAS  Google Scholar 

  8. Okamura H, Ikeda-Ohno A, Saito T, Aoyagi N, Naganawa H, Hirayama N, Umetani S, Imura H, Shimojo K (2012) Specific cooperative effect of a macrocyclic receptor for metal ion transfer into an ionic liquid. Anal Chem 84:9332–9339

    CAS  Google Scholar 

  9. Janssen CHC, Sanchez A, Kobrak MN (2014) Selective extraction of metal ions from aqueous phase to ionic liquids: a novel thermodynamic approach to separations. ChemPhysChem 15:3536–3543

    Article  CAS  Google Scholar 

  10. Wang NN, Zhang QG, Wu FG, Li QZ, Yu ZW (2010) Hydrogen bonding interactions between a representative pyridinium-based ionic liquid [BuPy][BF4] and water/dimethyl dulfoxide. J Phys Chem B 114:689–8700

    Google Scholar 

  11. Takamuku T, Hoke H, Idrissi A, Marekha BA, Moreau M, HondaY UT, Shimomura T (2014) Microscopic interactions of the imidazolium-based ionic liquid with molecular liquids depending on their electron-donicity. Phys Chem Chem Phys 16:23627–23638

    Article  CAS  Google Scholar 

  12. Zheng YZ, Wang NN, Luo JJ, Zhou Y, Yu ZW (2013) Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys Chem Chem Phys 15:18055–18064

    Article  CAS  Google Scholar 

  13. Zhu X, Sun H, Zhang D, Liu C (2011) Theoretical study on the interactions between methanol and imidazolium-based ionic liquids. J Mol Model 17:1997–2004

    Article  CAS  Google Scholar 

  14. Wang Y, Li H, Han S (2006) Theoretical investigation of the interactions between water molecules and ionic liquids. J Phys Chem B 110:24646–24651

    Article  CAS  Google Scholar 

  15. Pomelli CS, Chiappe C (2013) Computational studies on organic reactivity in ionic liquids. Phys Chem Chem Phys 15:412–423

    Article  Google Scholar 

  16. Pomelli CS, Chiappe C, Vidis A, Laurenczy C, Dyson PJ (2007) Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: experimental and theoretical investigation. J Phys Chem B 111:13014–13019

    Article  CAS  Google Scholar 

  17. He H, Chen H, Zheng Y, Zhang S, Yu Z (2015) Hydrogen-bonding interactions between a pyridinium-based ionic liquid [C4Py][SCN] and dimethyl sulfoxide. Chem Eng Sci 121:169–179

    Article  CAS  Google Scholar 

  18. Roth C, Appelhagen A, Jobst N, Ludwig R (2012) Microheterogeneities in ionic-liquid–methanol solutions studied by FTIR spectroscopy, DFT calculations and molecular dynamics simulations. ChemPhysChem 13:1708–1717

  19. Blanchard LA, Brennecke JF (2001) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Revs 40:287–292

    Article  CAS  Google Scholar 

  20. Seddon KR, Stark A, Torres M (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2288

    Article  CAS  Google Scholar 

  21. Holbrey JD, Reichardt WM, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers RD (2003) Liquid clathrate formation in ionic liquid–aromatic mixtures. Chem Commun 20:476–477

  22. Zhang SG, Qi XJ, Ma XY, Liu LJ, Zhang QH, Deng YQ (2012) Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidzaolium-based ion pairs by density functional theory calculations and experiments. J Phys Org Chem 25:248–257

    Article  CAS  Google Scholar 

  23. Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659

    Article  CAS  Google Scholar 

  24. Zhang SG, Qi XJ, Ma XY, Lu LJ, Deng YQ (2010) Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions. J Phys Chem B 114:3912–3920

    Article  CAS  Google Scholar 

  25. Sun J, Lu B, Wang X, Li X, Zhao J, Cai Q (2013) A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2. Fuel Process Technol 115:233–237

    Article  CAS  Google Scholar 

  26. Yuan X, Yan N, Katsyuba SA, Zvereva EE, Kou Y, Dyson PJ (2012) A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids. Phys Chem Chem Phys 14:6026–6033

    Article  CAS  Google Scholar 

  27. Werner T, Tenhumberg N, Büttner H (2014) Hydroxyl-functionalized imidazoles: highly active additives for the potassium iodide-catalyzed synthesis of 1,3-dioxolan-2-one derivatives from epoxides and carbon dioxide. ChemCatChem 6:3493–3500

    Article  CAS  Google Scholar 

  28. Wang L, Jin X, Li P, Zhang J (2014) Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction. Ind Eng Chem Res 53:8426–8435

    Article  CAS  Google Scholar 

  29. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453

    Article  CAS  Google Scholar 

  30. Remsing RC, Wildin JL, Rapp AL, Moyna G (2007) Hydrogen bonds in ionic liquids revisited: 35/37Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621

  31. Dong K, Zhang SJ, Wang DX, Yao XQ (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782

    Article  CAS  Google Scholar 

  32. Fumino K, Wulf A, Ludwig R (2008) The cation–anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed 47:3830–3834

    Article  CAS  Google Scholar 

  33. Li XF, Sevilla MD, Sanche L (2003) DFT investigation of dehalogenation of adenine-halouracil base pairs upon low-energy electron attachment. J Am Chem Soc 125:8916–8920

    Article  CAS  Google Scholar 

  34. Chen XY, Jing YY, Yang XZ (2016) Unexpected direct hydride transfer mechanism for the hydrogenation of ethyl acetate to ethanol catalyzed by SNS pincer ruthenium complexes. Chem Eur J 52:586–591

    Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  36. Li HY, Lu YX, Zhu X, Peng CJ, Hu J, Liu HL, Hu Y (2012) CO2 capture through halogen bonding: a theoretical perspective. Sci China Chem 55:1566–1572

    Article  CAS  Google Scholar 

  37. Zhu X, Lu YX, Peng CJ, Hu J, Liu HL, Hu Y (2011) Halogen bonding interactions between brominated ion pairs and CO2 molecules: implications for design of new and efficient ionic liquids for CO2 absorption. J Phys Chem B 115:3949–3958

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian, Inc., Pittsburgh

  39. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  40. Rivera-Rubero S, Baldelli S (2004) Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J Am Chem Soc 126:11788–11789

    Article  CAS  Google Scholar 

  41. Köddermann T, Wertz C, Heintz A, Ludwig R (2006) The association of water in ionic liquids: a reliable measure of polarity. Angew Chem Int Ed 45:3697–3702

    Article  Google Scholar 

  42. Crosthwaite JM, Muldoon MJ, Aki SNVK, Maginn EJ, Brennecke JF (2006) Liquid phase behavior of ionic liquids with alcohols: experimental studies and modeling. J Phys Chem B 110:9354–9361

    Article  CAS  Google Scholar 

  43. Chapeaux A, Simoni LD, Stadtherr MA, Brennecke JF (2007) Liquid phase behavior of ionic liquids with water and 1-octanol and modeling of 1-octanol/water partition coefficients. J Chem Eng Data 52:2462–2467

    Article  CAS  Google Scholar 

  44. Lu Y, Li H, Zhu X, Zhu W, Liu H (2011) How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J Phys Chem A 115:4467–4475

  45. Riley KE, Merz JKM (2007) Insights into the strength and origin of halogen bonding: the halobenzene−formaldehyde dimer. J Phys Chem A 111:1688–1694

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 21133009), the Scientific Research Foundation of Haust (no. 2015QN012) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (grant no.15HASTIT004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tian, X., Ren, Y. et al. A theoretical investigation of the interactions between hydroxyl-functionalized ionic liquid and water/methanol/dimethyl sulfoxide. J Mol Model 22, 195 (2016). https://doi.org/10.1007/s00894-016-3063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3063-4

Keywords

Navigation