Skip to main content
Log in

Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human gonadotropin hormone receptor, a G-protein coupled receptor, is the target of many medications used in fertility disorders. Obtaining more structural information about the receptor could be useful in many studies related to drug design. In this study, the structure of human gonadotropin receptor was subjected to homology modeling studies and molecular dynamic simulation within a DPPC lipid bilayer for 100 ns. Several frames were thereafter extracted from simulation trajectories representing the receptor at different states. In order to find a proper model of the receptor at the antagonist state, all frames were subjected to cross-docking studies of some antagonists with known experimental values (Ki). Frame 194 revealed a reasonable correlation between docking calculated energy scores and experimental activity values (|r| = 0.91). The obtained correlation was validated by means of SSLR and showed the presence of no chance correlation for the obtained model. Different structural features reported for the receptor, such as two disulfide bridges and ionic lock between GLU90 and LYS 121 were also investigated in the final model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ulloa-Aguirre A, Timossi C (2000) Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins. Reprod BioMed Online 1(2):48–62

    Article  CAS  Google Scholar 

  2. Speroff L, Fritz MA (2005) Clinical gynecologic endocrinology and infertility. Lippincott Williams & Wilkins, Philadelphia

  3. Torrealday S, Lalioti MD, Guzeloglu-Kayisli O, Seli E (2013) Characterization of the gonadotropin releasing hormone receptor (GnRHR) expression and activity in the female mouse ovary. Endocrinology 154(10):3877–3887

    Article  CAS  Google Scholar 

  4. Sealfon SC, Weinstein H, Millar RP (1997) Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr Rev 18(2):180–205

    Article  CAS  Google Scholar 

  5. Garner KL, Perrett RM, Voliotis M, Bowsher C, Pope GR, Pham T, Caunt CJ, Tsaneva-Atanasova K, McArdle CA (2015) Information transfer in gonadotropin-releasing hormone (GnRH) signaling: extracellular signal-regulated kinase (ERK)-mediated feedback loops control hormone sensing. J Biol Chem:jbc. M115. 686964

  6. López de Maturana R, Pawson AJ, Lu Z-L, Davidson L, Maudsley S, Morgan K, Langdon SP, Millar RP (2008) Gonadotropin-releasing hormone analog structural determinants of selectivity for inhibition of cell growth: support for the concept of ligand-induced selective signaling. Mol Endocrinol 22(7):1711–1722

    Article  Google Scholar 

  7. Filicori M (1994) Gonadotrophin-releasing hormone agonists. Drugs 48(1):41–58

    Article  CAS  Google Scholar 

  8. Kwok C, Treeck O, Buchholz S, Seitz S, Ortmann O, Engel J (2015) Receptors for luteinizing hormone-releasing hormone (GnRH) as therapeutic targets in triple negative breast cancers (TNBC). Target Oncol 10(3):365–373

    Article  CAS  Google Scholar 

  9. Pawson AJ, Morgan K, Maudsley SR, Millar RP (2003) Type II gonadotrophin-releasing hormone (GnRH-II) in reproductive biology. Reproduction 126(3):271–278

    Article  CAS  Google Scholar 

  10. Millar RP, Lu Z-L, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR (2004) Gonadotropin-releasing hormone receptors. Endocr Rev 25(2):235–275

    Article  CAS  Google Scholar 

  11. Lu Z-L, Gallagher R, Sellar R, Coetsee M, Millar RR (2005) Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor binding sites specifically increase binding affinity for GnRH II, but not GnRH I: evidence for ligand-selective receptor active conformations. J Biol Chem

  12. Millar RP, Pawson AJ, Morgan K, Rissman EF, Lu Z-L (2008) Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front Neuroendocrinol 29(1):17–35

    Article  CAS  Google Scholar 

  13. Jardón-Valadez E, Ulloa-Aguirre A, An P (2008) Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer. J Phys Chem B 112(34):10704–10713

    Article  Google Scholar 

  14. Kenneth M, Merz J, Ringe D, Reynolds C (2010) Drug design: structure and ligand-based approaches, vol 1. Cambridge University Press, New York, pp 197–257

    Google Scholar 

  15. Lanier MC, Feher M, Ashweek NJ, Loweth CJ, Rueter JK, Slee DH, Williams JP, Zhu Y-F, Sullivan SK, Brown MS (2007) Selection, synthesis, and structure–activity relationship of tetrahydropyrido [4, 3-d] pyrimidine-2, 4-diones as human GnRH receptor antagonists. Bioorg Med Chem 15(16):5590–5603

    Article  CAS  Google Scholar 

  16. Tundidor-Camba A, Caballero J, Coll D (2013) 3D-QSAR modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. Med Chem 9(4):560–570

    Article  CAS  Google Scholar 

  17. Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14(13):676–683

    Article  CAS  Google Scholar 

  18. Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19(7):890–897

    Article  CAS  Google Scholar 

  19. Katritch V, Rueda M, Lam PCH, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins Struct Funct Bioinformatics 78(1):197–211

    Article  CAS  Google Scholar 

  20. França TCC (2015) Homology modeling: an important tool for the drug discovery. J Biomol Struct Dyn 33(8):1780–1793

    Article  Google Scholar 

  21. Khoddami M, Nadri H, Moradi A, Sakhteman A (2015) Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor. J Mol Model 21(2):1–10

    Article  CAS  Google Scholar 

  22. Conn PM, Ulloa-Aguirre A (2010) Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends Endocrinol Metab 21(3):190–197

    Article  CAS  Google Scholar 

  23. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  Google Scholar 

  24. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40

    Article  Google Scholar 

  25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  26. Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37(suppl 2):W465–W468

    Article  CAS  Google Scholar 

  27. Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283(2):489–506

    Article  CAS  Google Scholar 

  28. Cserzö M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10(6):673–676

    Article  Google Scholar 

  29. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  Google Scholar 

  30. Sonnhammer EL, Von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175-82

  31. Hofman K (1993) TMbase-A database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  32. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32(suppl 2):W321–W326

    Article  CAS  Google Scholar 

  33. Käll L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(suppl 1):i251–i257

    Article  Google Scholar 

  34. Shokri A, Abedin A, Fattahi A, Kass SR (2012) Effect of hydrogen bonds on p K a values: importance of networking. J Am Chem Soc 134(25):10646–10650

    Article  CAS  Google Scholar 

  35. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  37. Schmidt TH, Kandt C (2012) LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inf Model 52(10):2657–2669

    Article  CAS  Google Scholar 

  38. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4):475–488

    Article  CAS  Google Scholar 

  39. Allen WJ, Lemkul JA, Bevan DR (2009) GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics. J Comput Chem 30(12):1952–1958

    Article  CAS  Google Scholar 

  40. Morris GM, Huey R, Olson AJ (2008) Using autodock for ligand-receptor docking. Curr Protocol Bioinformatics doi: 10.1002/0471250953.bi0814s24

  41. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107

    Article  CAS  Google Scholar 

  42. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522

    Article  Google Scholar 

  43. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(suppl 2):W116–W118

    Article  CAS  Google Scholar 

  44. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  Google Scholar 

  45. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  Google Scholar 

  46. Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One 6(8):e21931

    Article  CAS  Google Scholar 

  47. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447

    Article  Google Scholar 

  48. Källberg M, Margaryan G, Wang S, Ma J, Xu J (2014) RaptorX server: a resource for template-based protein structure modeling. Protein Struct Prediction:17–27

  49. Lu Z-L, Coetsee M, White CD, Millar RP (2007) Structural determinants for ligand-receptor conformational selection in a peptide G protein-coupled receptor. J Biol Chem 282(24):17921–17929

    Article  CAS  Google Scholar 

  50. Engel J (2012) Use of LHRH antagonists for intermittent treatments. Patent US 8273716 B2

  51. Sakhteman A, Lahtela-Kakkonen M, Poso A (2011) Studying the catechol binding cavity in comparative models of human dopamine D 2 receptor. J Mol Graph Model 29(5):685–692

    Article  CAS  Google Scholar 

  52. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    Article  CAS  Google Scholar 

  53. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE (2000) Crystal structure of rhodopsin: AG protein-coupled receptor. Science 289(5480):739–745

    Article  CAS  Google Scholar 

  54. Zhang K, Zhang J, Gao Z-G, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115

    Article  CAS  Google Scholar 

  55. Cook JV, Eidne KA (1997) An intramolecular disulfide bond between conserved extracellular cysteines in the gonadotropin-releasing hormone receptor is essential for binding and activation 1. Endocrinology 138(7):2800–2806

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sakhteman.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any human participant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TXT 6 kb)

ESM 2

(PNG 147 kb)

ESM 3

(TXT 5 kb)

ESM 4

(PNG 145 kb)

ESM 5

(TXT 7 kb)

ESM 6

(PNG 150 kb)

ESM 7

(TXT 7 kb)

ESM 8

(PNG 156 kb)

ESM 9

(TXT 6 kb)

ESM 10

(PNG 135 kb)

ESM 11

(TXT 5 kb)

ESM 12

(PNG 144 kb)

ESM 13

(TXT 4 kb)

ESM 14

(PNG 115 kb)

ESM 15

(TXT 5 kb)

ESM 16

(PNG 144 kb)

ESM 17

(TXT 6 kb)

ESM 18

(PNG 138 kb)

ESM 19

(TXT 6 kb)

ESM 20

(PNG 143 kb)

ESM 21

(TXT 5 kb)

ESM 22

(PNG 123 kb)

ESM 23

(TXT 5 kb)

ESM 24

(PNG 117 kb)

ESM 25

(TXT 6 kb)

ESM 26

(PNG 152 kb)

ESM 27

(TXT 8 kb)

ESM 28

(PNG 167 kb)

ESM 29

(TXT 8 kb)

ESM 30

(PNG 167 kb)

ESM 31

(TXT 8 kb)

ESM 32

(PNG 144 kb)

ESM 33

(TXT 8 kb)

ESM 34

(PNG 169 kb)

ESM 35

(TXT 7 kb)

ESM 36

(PNG 144 kb)

ESM 37

(TXT 8 kb)

ESM 38

(PNG 179 kb)

ESM 39

(TXT 6 kb)

ESM 40

(PNG 155 kb)

ESM 41

(TXT 5 kb)

ESM 42

(PNG 128 kb)

ESM 43

(TXT 7 kb)

ESM 44

(PNG 171 kb)

ESM 45

(TXT 4 kb)

ESM 46

(PNG 116 kb)

ESM 47

(TXT 5 kb)

ESM 48

(PNG 151 kb)

ESM 49

(TXT 6 kb)

ESM 50

(PNG 170 kb)

ESM 51

(TXT 6 kb)

ESM 52

(PNG 154 kb)

ESM 53

(TXT 7 kb)

ESM 54

(PNG 170 kb)

ESM 55

(TXT 7 kb)

ESM 56

(PNG 147 kb)

ESM 57

(TXT 6 kb)

ESM 58

(PNG 168 kb)

ESM 59

(TXT 6 kb)

ESM 60

(PNG 184 kb)

ESM 61

(TXT 7 kb)

ESM 62

(PNG 179 kb)

ESM 63

(TXT 6 kb)

ESM 64

(PNG 137 kb)

ESM 65

(TXT 6 kb)

ESM 66

(PNG 157 kb)

ESM 67

(TXT 8 kb)

ESM 68

(PNG 158 kb)

ESM 69

(TXT 270 kb)

ESM 70

(XLSX 49 kb)

ESM 71

(PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhteman, A., Khoddami, M., Negahdaripour, M. et al. Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies. J Mol Model 22, 225 (2016). https://doi.org/10.1007/s00894-016-3091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3091-0

Keywords

Navigation