Skip to main content

Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom

  • Protocol
  • First Online:
Computational Design of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2315))

Abstract

With 700 members, G protein-coupled receptors (GPCRs) of the rhodopsin family (class A) form the largest membrane receptor family in humans and are the target of about 30% of presently available pharmaceutical drugs. The recent boom in GPCR structures led to the structural resolution of 57 unique receptors in different states (39 receptors in inactive state only, 2 receptors in active state only and 16 receptors in different activation states). In spite of these tremendous advances, most computational studies on GPCRs, including molecular dynamics simulations, virtual screening and drug design, rely on GPCR models obtained by homology modeling. In this protocol, we detail the different steps of homology modeling with the MODELLER software, from template selection to model evaluation. The present structure boom provides closely related templates for most receptors. If, in these templates, some of the loops are not resolved, in most cases, the numerous available structures enable to find loop templates with similar length for equivalent loops. However, simultaneously, the large number of putative templates leads to model ambiguities that may require additional information based on multiple sequence alignments or molecular dynamics simulations to be resolved. Using the modeling of the human bradykinin receptor B1 as a case study, we show how several templates are managed by MODELLER, and how the choice of template(s) and of template fragments can improve the quality of the models. We also give examples of how additional information and tools help the user to resolve ambiguities in GPCR modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729. https://doi.org/10.1093/emboj/18.7.1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  3. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996. https://doi.org/10.1038/nrd2199

    Article  CAS  PubMed  Google Scholar 

  4. Sealfon SC, Chi L, Ebersole BJ et al (1995) Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 270(28):16683–16688. https://doi.org/10.1074/jbc.270.28.16683

    Article  CAS  PubMed  Google Scholar 

  5. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745. https://doi.org/10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  6. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. https://doi.org/10.1126/science.1150577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang J, Chun E, Liu C et al (2016) Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol Sci 37(12):1055–1069. https://doi.org/10.1016/j.tips.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Nafria J, Tate CG (2020) Cryo-electron microscopy: moving beyond x-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol 60:51–71. https://doi.org/10.1146/annurev-pharmtox-010919-023545

    Article  CAS  PubMed  Google Scholar 

  9. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27. https://doi.org/10.1016/j.tips.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Munk C, Mutt E, Isberg V et al (2019) An online resource for GPCR structure determination and analysis. Nat Methods 16(2):151–162. https://doi.org/10.1038/s41592-018-0302-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasmussen SG, DeVree BT, Zou Y et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. https://doi.org/10.1038/nature10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katritch V, Fenalti G, Abola EE et al (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39(5):233–244. https://doi.org/10.1016/j.tibs.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Margiotta E, Deganutti G, Moro S (2018) Could the presence of sodium ion influence the accuracy and precision of the ligand-posing in the human A2A adenosine receptor orthosteric binding site using a molecular docking approach? Insights from Dockbench. J Comput Aided Mol Des 32(12):1337–1346. https://doi.org/10.1007/s10822-018-0174-2

    Article  CAS  PubMed  Google Scholar 

  14. Nygaard R, Frimurer TM, Holst B et al (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30(5):249–259. https://doi.org/10.1016/j.tips.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  15. Congreve M, Dias JM, Marshall FH (2014) Structure-based drug design for G protein-coupled receptors. Prog Med Chem 53:1–63. https://doi.org/10.1016/B978-0-444-63380-4.00001-9

    Article  CAS  PubMed  Google Scholar 

  16. Shonberg J, Lopez L, Scammells PJ et al (2014) Biased agonism at G protein-coupled receptors: the promise and the challenges—a medicinal chemistry perspective. Med Res Rev 34(6):1286–1330. https://doi.org/10.1002/med.21318

    Article  CAS  PubMed  Google Scholar 

  17. Diaz C, Angelloz-Nicoud P, Pihan E (2018) Modeling and deorphanization of orphan GPCRs. Methods Mol Biol 1705:413–429. https://doi.org/10.1007/978-1-4939-7465-8_21

    Article  CAS  PubMed  Google Scholar 

  18. Stockert JA, Devi LA (2015) Advancements in therapeutically targeting orphan GPCRs. Front Pharmacol 6:100. https://doi.org/10.3389/fphar.2015.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  20. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 86:2 9 1–2 9 37. https://doi.org/10.1002/cpps.20

    Article  Google Scholar 

  21. Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41(1):98–107. https://doi.org/10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez R, Sali A (1997) Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7(2):206–214. https://doi.org/10.1016/s0959-440x(97)80027-9

    Article  CAS  PubMed  Google Scholar 

  23. Chabbert M, Castel H, Pele J et al (2012) Evolution of class A G-protein-coupled receptors: implications for molecular modeling. Curr Med Chem 19(8):1110–1118. https://doi.org/10.2174/092986712799320600

    Article  CAS  PubMed  Google Scholar 

  24. Deville J, Rey J, Chabbert M (2009) An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J Mol Evol 68(5):475–489. https://doi.org/10.1007/s00239-009-9214-9

    Article  CAS  PubMed  Google Scholar 

  25. Pele J, Abdi H, Moreau M et al (2011) Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors. PLoS One 6(4):e19094. https://doi.org/10.1371/journal.pone.0019094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taddese B, Deniaud M, Garnier A et al (2018) Evolution of chemokine receptors is driven by mutations in the sodium binding site. PLoS Comput Biol 14(6):e1006209. https://doi.org/10.1371/journal.pcbi.1006209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5 6 1–5 6 37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  29. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  30. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholas KB, Nicholas HB Jr, Deerfield DWI (1999) GeneDoc: analysis and visualization of genetic variation. EMBNEWNEWS 4:14

    Google Scholar 

  33. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394. https://doi.org/10.1093/nar/gkv332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486. https://doi.org/10.1007/bf00228148

    Article  CAS  PubMed  Google Scholar 

  35. Holm L, Sander C (1998) Removing near-neighbour redundancy from large protein sequence collections. Bioinformatics 14(5):423–429. https://doi.org/10.1093/bioinformatics/14.5.423

    Article  CAS  PubMed  Google Scholar 

  36. Isberg V, Mordalski S, Munk C et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44(D1):D356–D364. https://doi.org/10.1093/nar/gkv1178

    Article  CAS  PubMed  Google Scholar 

  37. Chan WK, Zhang H, Yang J et al (2015) GLASS: a comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics 31(18):3035–3042. https://doi.org/10.1093/bioinformatics/btv302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chantreau V, Taddese B, Munier M et al (2015) Molecular insights into the transmembrane domain of the thyrotropin receptor. PLoS One 10(11):e0142250. https://doi.org/10.1371/journal.pone.0142250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castleman PN, Sears CK, Cole JA et al (2019) GPCR homology model template selection benchmarking: global versus local similarity measures. J Mol Graph Model 86:235–246. https://doi.org/10.1016/j.jmgm.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  40. Costanzi S, Skorski M, Deplano A et al (2016) Homology modeling of a class A GPCR in the inactive conformation: a quantitative analysis of the correlation between model/template sequence identity and model accuracy. J Mol Graph Model 70:140–152. https://doi.org/10.1016/j.jmgm.2016.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srinivasan N, Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6(5):501–512. https://doi.org/10.1093/protein/6.5.501

    Article  CAS  PubMed  Google Scholar 

  42. Fenalti G, Giguere PM, Katritch V et al (2014) Molecular control of delta-opioid receptor signalling. Nature 506(7487):191–196. https://doi.org/10.1038/nature12944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161(4):833–844. https://doi.org/10.1016/j.cell.2015.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341(6152):1387–1390. https://doi.org/10.1126/science.1241475

    Article  CAS  PubMed  Google Scholar 

  45. Wingler LM, Skiba MA, McMahon C et al (2020) Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367(6480):888–892. https://doi.org/10.1126/science.aay9813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  CAS  PubMed  Google Scholar 

  47. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Yang J, Jang R, Zhang Y (2015) GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23(8):1538–1549. https://doi.org/10.1016/j.str.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Worth CL, Kreuchwig F, Tiemann JKS et al (2017) GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for class A G-protein coupled receptors. Nucleic Acids Res 45(W1):W408–W415. https://doi.org/10.1093/nar/gkx399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  51. Braun W, Go N (1985) Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J Mol Biol 186(3):611–626. https://doi.org/10.1016/0022-2836(85)90134-2

    Article  CAS  PubMed  Google Scholar 

  52. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425. https://doi.org/10.1124/mol.104.009001

    Article  CAS  PubMed  Google Scholar 

  53. Rappas M, Ali AAE, Bennett KA et al (2020) Comparison of orexin 1 and orexin 2 ligand binding modes using x-ray crystallography and computational analysis. J Med Chem 63(4):1528–1543. https://doi.org/10.1021/acs.jmedchem.9b01787

    Article  CAS  PubMed  Google Scholar 

  54. Park SH, Das BB, Casagrande F et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783. https://doi.org/10.1038/nature11580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hua T, Vemuri K, Pu M et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167(3):750–762. e714. https://doi.org/10.1016/j.cell.2016.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan H, Chen S, Yuan X et al (2019) Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol 15(1):27–33. https://doi.org/10.1038/s41589-018-0170-9

    Article  CAS  PubMed  Google Scholar 

  57. Wang L, Yao D, Deepak R et al (2018) Structures of the human PGD2 receptor CRTH2 reveal novel mechanisms for ligand recognition. Mol Cell 72(1):48–59.e4. https://doi.org/10.1016/j.molcel.2018.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morimoto K, Suno R, Hotta Y et al (2019) Crystal structure of the endogenous agonist-bound prostanoid receptor EP3. Nat Chem Biol 15(1):8–10. https://doi.org/10.1038/s41589-018-0171-8

    Article  CAS  PubMed  Google Scholar 

  59. Isberg V, Mordalski S, Munk C et al (2017) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 45(5):2936. https://doi.org/10.1093/nar/gkw1218

    Article  CAS  PubMed  Google Scholar 

  60. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by institutional grants from INSERM, CNRS and University of Angers. This work was granted access to HPC resources of IDRIS (GENCI grant 100567 to MC). MC is supported by CNRS. AT is supported by a fellowship from the University of Carthage (Tunisia). RB is supported by a fellowship from the University of Angers (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Chabbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tiss, A., Ben Boubaker, R., Henrion, D., Guissouma, H., Chabbert, M. (2021). Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics