Skip to main content
Log in

A theoretical study of myoglobin working as a nitric oxide scavenger

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism for the reaction between nitric oxide (NO) and O2 bound to the heme iron of myoglobin (Mb), including the following isomerization to nitrate, has been investigated using hybrid density functional theory (B3LYP). Myoglobin working as a NO scavenger could be of importance, since NO reversibly inhibits the terminal enzyme in the respiration chain, cytochrome c oxidase. The concentration of NO in the cell will thus affect the respiration and thereby the synthesis of ATP. The calculations show that the reaction between NO and the heme-bound O2 gives a peroxynitrite intermediate whose O–O bond undergoes a homolytic cleavage, forming a NO2 radical and myoglobin in the oxo-ferryl state. The NO2 radical then recombines with the oxo-ferryl, forming heme-bound nitrate. Nine different models have been used in the present study to examine the effect on the reaction both by the presence and the protonation state of the distal His64, and by the surroundings of the proximal His93. The barriers going from the oxy-Mb and nitric oxide reactant to the peroxynitrite intermediate and further to the oxo-ferryl and NO2 radical are around 10 and 7 kcal/mol, respectively. Forming the product, nitrate bound to the heme iron has a barrier of less than ~7 kcal/mol. The overall reaction going from a free nitric oxide and oxy-Mb to the heme bound nitrate is exergonic by more than 30 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olson JS, Phillips GN Jr (1997) J Inorg Biochem 2:544–552

    Article  CAS  Google Scholar 

  2. Miller L, Patel M, Chance MR (1996) J Inorg Biochem 118:4511–4517

    Article  CAS  Google Scholar 

  3. Brunori M (2001) Trends Biochem Sci 26:21–23

    Article  CAS  PubMed  Google Scholar 

  4. Brunori M (2001) Trends Biochem Sci 26:209–210

    Article  CAS  PubMed  Google Scholar 

  5. Bredt DS, Snyder SH (1994) Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  6. Doyle MP, Hoekstra JW (1981) J Inorg Biochem 14:351–358

    Article  CAS  PubMed  Google Scholar 

  7. Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN Jr, Olson JS (1996) Biochemistry 35:6976–6983

    Article  CAS  PubMed  Google Scholar 

  8. Wade RS, Castro CE (1996) Chem Res Toxicol 9:1382–1390

    Article  CAS  PubMed  Google Scholar 

  9. Livingston DJ, McLachlan SJ, La Mar GN, Brown WD (1985) J Biol Chem 260:15699–15707

    CAS  PubMed  Google Scholar 

  10. Herold S, Exner M, Nauser T (2001) Biochemistry 40:3385–3395

    Article  CAS  PubMed  Google Scholar 

  11. Herold S, Shivashankar K, Mehl M (2002) Biochemistry 41:13460–13472

    Article  CAS  PubMed  Google Scholar 

  12. Maurus R, Bogumil R, Nguyen NT, Mauk G, Brayer G (1998) Nitric Oxide Biol Chem 332:67–74

    CAS  Google Scholar 

  13. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) FEBS Lett 345:50–54

    Article  CAS  PubMed  Google Scholar 

  14. Brown GC, Cooper CE (1994) FEBS Lett 356:295–298

    Article  CAS  PubMed  Google Scholar 

  15. Brown GC (1995) FEBS Lett 369:136–139

    Article  CAS  PubMed  Google Scholar 

  16. Sarti P, Lendaro E, Ippoliti R, Bellelli A, Benedetti PA, Brunori M (1999) FASEB J 13:191–197

    CAS  PubMed  Google Scholar 

  17. Radi R, Beckman JS, Bush KM, Freeman BA (1991) J Biol Chem 266:4244–4250

    CAS  PubMed  Google Scholar 

  18. Ischiropoulos H (1998) Arch Biochem Biophys 356:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Arch Biochem Biophys 288:481–487

    CAS  PubMed  Google Scholar 

  20. Denicola A, Freeman BA, Trujillo M, Radi R (1996) Arch Biochem Biophys 333:49–58

    Article  CAS  PubMed  Google Scholar 

  21. King PA, Anderson VE, Edwards JO, Gustafson G, Plumb RC, Suggs JW (1992) J Am Chem Soc 114:5430–5432

    CAS  Google Scholar 

  22. Radi R (1996) Chem Res Toxicol 9:828–835

    Article  CAS  PubMed  Google Scholar 

  23. Herold S, Matsui T, Watanabe Y (2001) J Am Chem Soc 123:4085–4086

    Article  CAS  PubMed  Google Scholar 

  24. Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Chem Res Toxicol 10:1285–1292

    Article  CAS  PubMed  Google Scholar 

  25. Bartberger MD, Olson LP, Houk KN (1998) Chem Res Toxicol 11:710–711

    Article  CAS  PubMed  Google Scholar 

  26. Merényi G, Lind J, Goldstein S, Czapski G (1998) Chem Res Toxicol 11:712–713

    Article  PubMed  Google Scholar 

  27. Lymar SV, Hurst JK (1998) Chem Res Toxicol 11:714–715

    Article  CAS  PubMed  Google Scholar 

  28. Koppenol WH (1998) Chem Res Toxicol 11:716–717

    Article  CAS  PubMed  Google Scholar 

  29. Squadrito GL, Pryor WA (1998) Chem Res Toxicol 11:718–719

    Article  CAS  PubMed  Google Scholar 

  30. Radi R (1998) Chem Res Toxicol 11:720–721

    Article  CAS  PubMed  Google Scholar 

  31. Lee J, Hunt JA, Groves JT (1998) J Am Chem Soc 120:7493–7501

    Article  CAS  Google Scholar 

  32. Crow JP (1999) Arch Biochem Biophys 371:41–52

    Article  CAS  PubMed  Google Scholar 

  33. Balavoine GGA, Geletii YV, Bejan D (1997) Nitric Oxide Biol Chem 1:507–521

    Article  CAS  Google Scholar 

  34. Potter WT, Tucker MP, Houtchens RA, Caughey WW (1987) Biochemistry 26:4699–4707

    CAS  PubMed  Google Scholar 

  35. George P, Hanania GIH, Irvine DH, Abu-Issa I (1964) J Chem Soc 5689–5694

  36. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian98. Gaussian. Pittsburgh, Pa., USA

  39. Schrodinger (2000) Jaguar 4.2. Schrodinger, Portland, Ore., USA

  40. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA III (1994) J Am Chem Soc 116:11875–11882

    CAS  Google Scholar 

  41. Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824

    Article  CAS  Google Scholar 

  42. Curtiis LA, Raghavachari K, Redfern RC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  Google Scholar 

  43. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  CAS  PubMed  Google Scholar 

  44. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  CAS  PubMed  Google Scholar 

  45. Blomberg MRA, Siegbahn PEM (2001) J Phys Chem B 105:9375–9386

    Article  CAS  Google Scholar 

  46. Blomberg M, Blomberg MRA, Siegbahn PEM (2003) J Phys Chem B 107:3297–3308

    Article  CAS  Google Scholar 

  47. Tsai HH, Hamilton TP, Tsai JHM, van der Woerd M, Harrison JG, Jablonsky MJ, Beckman JS, Koppenol WH (1996) J Phys Chem 100:15087–15095

    Article  CAS  Google Scholar 

  48. Wanat A, Gdula-Argasinska J, Rutkowska-Zbik D, Witko M, Stochel G, van Eldik R (2002) J Biol Inorg Chem 7:165–176

    Article  CAS  PubMed  Google Scholar 

  49. Lin J, Merryweather J, Vitello LB, Erman JE (1999) Arch Biochem Biophys 362:148–158

    Article  CAS  PubMed  Google Scholar 

  50. Merryweather J, Summers F, Vitello LB, Erman JE (1998) Arch Biochem Biophys 358:359–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Supercomputer Center (Sweden) for generous grants of computer time at the SGI3800. We also thank Dr Susanna Herold for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, L.M., Blomberg, M.R.A. & Siegbahn, P.E.M. A theoretical study of myoglobin working as a nitric oxide scavenger. J Biol Inorg Chem 9, 923–935 (2004). https://doi.org/10.1007/s00775-004-0585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0585-5

Keywords

Navigation