Skip to main content
Log in

Water-assisted isomerization of the [H, C, N, O] system

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ten minima of [H, C, N, O] isomers were investigated in gas phase and water solution using the polarizable continuum model at the CCSD(T)//M06-2X/6–311 + G(3df,2p) level of theory. The results show that the stability order of all isomers in water solution is HNCO > HOCN > HCNO > HONC > Y-OC(H)N > cycl-OCN(H)-a ≈ cycl-OCN(H)-b > cycl-NCO(H) > HNOC > HCON, i.e., the same as that in the gas phase. Potential energy surfaces of [H, C, N, O] system isomerization were constructed in gas phase and in water solution, showing that the isomerization of [H, C, N, O] isomers in gas phase is unfavorable because of the high barrier height. Interestingly, although the water solvent has a little impact on the isomeric mechanism, water molecules (H2O)n(n = 1–3) acting as catalyst dramatically lower the barrier height in the hydrogen transfer processes (HCNO → HONC, HNCO → HOCN, and HCON → HNOC). Water is the most abundant compound in the interstellar area. These results give new insight into the mechanism of [H, C, N, O] system isomerization in interstellar gas. Enthalpies of formation of the isomers were predicted at the CBS-QB3, G4MP2 and W1U levels.

Electron location function (ELF) maps of species in the isomerization from HCNO to HONC at the M06-2X/6–311+G(3df,2p) level. Regions of greatest and smallest localization electron densityare colored red and blue, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mebel AM, Luna A, Lin MC, Morokuma K (1996) A density functional study of the global potential energy surfaces of the [HCNO] system in singlet and triplet states. J Chem Phys 105:6439–6454

    Article  CAS  Google Scholar 

  2. Quan DH, Herbst E, Osamura Y, Roueff E (2010) Gas-grain modeling of isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC) in assorted interstellar environments. Astrophys J 725:2101–2109

    Article  CAS  Google Scholar 

  3. Marcelino N, Brünken S, Cernicharo J, Quan D, Roueff E, Herbst E, Thaddeus P (2010) The puzzling behavior of HNCO isomers in molecular clouds. Astron Astrophys 516:A105

    Article  Google Scholar 

  4. Shapley AW, Bacskay GB (1999) A gaussian-2 quantum chemical study of CHNO: isomerization and molecular dissociation reactions. J Phys Chem A 103:6624–6631

    Article  CAS  Google Scholar 

  5. Yu JK, Wang S, Zheng QC, Zhang H, Zhang HX, Ding DJ, Sun CC (2008) Theoretical study on the decomposition mechanism of the HCNO molecules. Acta Chim Sin 66:597–602

    CAS  Google Scholar 

  6. Feng WH, Hershberger JF (2014) Quantification of the 248 nm photolysis products of HCNO (fulminic acid). J Phys Chem A 118:829–837

    Article  CAS  Google Scholar 

  7. Lattanzi V, Thorwirth S, Gottlieb CA, McCarthy MC (2012) Two isomers of protonated isocyanic acid: evidence for an ion –molecule pathway for HNCO↔HOCN isomerization. J Phys Chem Lett 3:3420–3424

  8. Theule P, Duvernay F, Ilmane A, Hasegawa T, Morata O, Coussan S, Danger G, Chiavassa T (2011) Kinetics of the OCN and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs. Astron Astrophys 530:A96

    Article  Google Scholar 

  9. Dan M, Kong WX, Wang S (2011) A density functional investigation of the reaction mechanism of H2O + HCNO. Int J Quantum Chem 111:165–173

    Article  Google Scholar 

  10. Zabardasti A, Solimannejad M (2007) Theoretical study of hydrogen bonded clusters of water and fulminic acid. J Mol Struct THEOCHEM 810:73–79

    Article  CAS  Google Scholar 

  11. Zabardasti A, Kakanejadifard A (2008) Theoretical study of hydrogen bonded clusters of water and cyanic acid: hydrogen bonding in terms of the molecular structure. Polyhedron 27:2973–2977

    Article  CAS  Google Scholar 

  12. Buszek RJ, Francisco JS, Anglada JM (2011) Water effects on atmospheric reactions. Int Rev Phys Chem 30:335–369

    Article  CAS  Google Scholar 

  13. Yepes D, Murray JS, Pérez P, Domingo LR, Politzer P, Jaque P (2014) Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in diels–alder reactions. Phys Chem Chem Phys 16:6727–6734

    Article  Google Scholar 

  14. Savin BA, Becke AD, Flad J, Nesper R, Preuss H, von Schnering HG (1991) A new look at electron localization. Angew Chem Ed Engl 30:409–412

    Article  Google Scholar 

  15. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  16. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  17. Goodson DZ (2002) Extrapolating the coupled-cluster sequence toward the full configuration-interaction limit. J Chem Phys 116:6948–6956

    Article  CAS  Google Scholar 

  18. Cammi R, Mennucci B, Tomasi J (2000) Fast evaluation of geometries and properties of excited molecules in solution: a tamm-dancoff model with application to 4-dimethylaminobenzonitrile. J Phys Chem A 104:5631–5637

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, J. A. Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

  20. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  21. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  22. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127: 124105-1-8

  23. Parthiban S, Martin JML (2001) Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J Chem Phys 114:6014–6029

    Article  CAS  Google Scholar 

  24. Andres J, Gonzalez-Navarrete P, Safont VS (2014) Unraveling reaction mechanisms by means of quantum chemical topology analysis. Int J Quantum Chem 114:1239–1252

    Article  CAS  Google Scholar 

  25. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Article  Google Scholar 

  26. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  27. Yeung CS, Ng PL, Guan XG, Phillips DL (2010) Water-assisted dehalogenation of thionyl chloride in the presence of water molecules. J Phys Chem A 114:4123–4130

    Article  CAS  Google Scholar 

  28. Hellwege KH, Hellwege AM (1974) Landolt-Bornstein: Group II, vol 6, Molecular constants from microwave, molecular beam, and electron spin resonance spectroscopy. Springer, Berlin

    Google Scholar 

  29. Brown SS, Berghout HL, Crim FF (1997) Raman spectroscopy of the N–C–O symmetric (ν3) and antisymmetric (ν2)stretch fundamentals in HNCO. J Chem Phys 107:9764–9771

    Article  CAS  Google Scholar 

  30. Yepes D, Murray JS, Santos JC, Toro-Labbé A, Politzer P, Jaque P (2013) Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. J Mol Model 19:2689–2697

    Article  CAS  Google Scholar 

  31. Yepes D, Murray JS, Politzerb P, Jaque P (2012) The reaction force constant: an indicator of the synchronicity in double proton transfer reactions. Phys Chem Chem Phys 14:11125–11134

    Article  CAS  Google Scholar 

  32. Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) Theoretical study of the decomposition of formamide in the presence of water molecules. J Phys Chem A 117:2543–2555

    Article  CAS  Google Scholar 

  33. Schuurman MS, Muir SR, Allen WD, Schaefer HF III (2004) Toward subchemical accuracy in computational thermochemistry: focal point analysis of the heat of formation of NCO and [H, N, C, O] isomers. J Chem Phys 120:11586–11599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Shanghai Supercomputer Center for access to the High Performance Computing Service and program support. This work was supported financially by the foundation of Shaanxi Education Department (2013JK0667), the Foundation of Yan’an University (YDQ2014-32), and the Foundation of the College of Chemistry and Chemical Engineering of Yan’an University (YDHG2014-Z04).

Compliance with Ethical Standards

The manuscript does not contain human and animal studies. All authors have read and approved the final submitted revised manuscript. Neither the entire nor any part of its content has been published or accepted elsewhere. It is not being submitted to any other journal, or posted on the internet. No data have been fabricated or manipulated (including images) to support the conclusions. We have read and have abided by the statement of the Committee on Publication Ethics (COPE) for manuscripts submitted to “Journal of Molecular Modeling”.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Cao.

Electronic supplementary material

Optimized geometries of all the species at the M06/6-311 + G(3df,2p) level are given in Fig. S1. The zero point energies (ZPE) and electronic energies (E) of all the species are listed in Table S1 and Table S2. Natural charges for the hydrogen transfer isomerization from the M06-2X/6-311 + G(3df,2p) calculations are listed in Table S1, Table S2, and Table S3.

ESM 1

(DOC 2821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Wang, Z.X., Gao, L.J. et al. Water-assisted isomerization of the [H, C, N, O] system. J Mol Model 21, 66 (2015). https://doi.org/10.1007/s00894-015-2628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2628-y

Keywords

Navigation