Skip to main content
Log in

Interstellar isomeric species: Energy, stability and abundance relationship

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Accurate enthalpies of formation are reported for known and potential interstellar isomeric species using high-level ab initio quantum-chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with molecules ranging from 3 to 12 atoms have been considered. The results show an interesting relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in the literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species could be linked to their stabilities if other factors do not dominate. The immediate consequences of this relationship in addressing some of the whys and wherefores among interstellar molecules and in predicting some possible candidates for future astronomical observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Thaddeus, M. Guélin, R.A. Linke, Astrophys. J. 246, 41 (1971)

    Article  Google Scholar 

  2. E. Herbst, Chem. Soc. Rev. 30, 168 (2001)

    Article  Google Scholar 

  3. E.E. Etim, E. Arunan, Planex Newslett. 5, 16 (2015)

    Google Scholar 

  4. T.D. Crawford, J.F. Stanton, J.C. Saeh, H.F. Schaefer, J. Am. Chem. Soc. 121, 1902 (1999)

    Article  Google Scholar 

  5. G. Wlodarczak, J. Mol. Struct. 347, 131 (1995)

    Article  ADS  Google Scholar 

  6. A.J. Remijan, J.M. Hollis, F.J. Lovas, D.F. Plusquellic, P.R. Jewell, Astrophys. J. 632, 333 (2005)

    Article  ADS  Google Scholar 

  7. J.M. Hollis, in Proceedings of the IAU Symposium, Vol. 231, edited by D.C. Lis, G.A. Blake, E. Herbst (2005)

  8. A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)

    Article  ADS  Google Scholar 

  9. R.L. Hudson, M.H. Moore, Icarus 172, 466 (2004)

    Article  ADS  Google Scholar 

  10. M. Lattelais, F. Pauzat, Y. Ellinger, C. Ceccarelli, Astrophys. J. 696, L133 (2009)

    Article  ADS  Google Scholar 

  11. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, revision D.01 (Gaussian, Inc., Wallingford, CT, 2009)

  12. J.M.L. Martin, G. de Oliveira, J. Chem. Phys. 111, 1843 (1999)

    Article  ADS  Google Scholar 

  13. L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126, 084108 (2007)

    Article  ADS  Google Scholar 

  14. L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 127, 124105 (2007)

    Article  ADS  Google Scholar 

  15. L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 106, 1063 (1997)

    Article  ADS  Google Scholar 

  16. http://webbook.nist.gov/chemistry/, accessed in May 2016

  17. B. Zuckerman, M. Morris, P. Palmer, B.E. Turner, Astrophys. J. 173, 125 (1972)

    Article  ADS  Google Scholar 

  18. G.L. Blackman, R.D. Brown, P.D. Godfrey, H.I. Gunn, Nature 261, 395 (1976)

    Article  ADS  Google Scholar 

  19. B.E. Turner, T.C. Steimle, L. Meerts, Astrophys. J. 426, 97 (1994)

    Article  ADS  Google Scholar 

  20. L.M. Ziurys, A.J. Apponi, M. Guélin, J. Cernicharo, Astrophys. J. 445, 47 (1995)

    Article  ADS  Google Scholar 

  21. K. Kawaguchi, E. Kagi, T. Hirano, S. Takano, S. Saito, Astrophys. J. 406, 39 (1993)

    Article  ADS  Google Scholar 

  22. M. Guélin, J. Cernicharo, C. Kahane, J. Gomez-Gonzales, Astron. Astrophys. 157, L17 (1986)

    ADS  Google Scholar 

  23. M. Guelin, R. Lucas, J. Cernicharo, Astron. Astrophys. 280, 19 (1993)

    ADS  Google Scholar 

  24. M. Guélin, S. Muller, J. Cernicharo, A.J. Apponi, M.C. McCarthy, C.A. Gottlieb, P. Thaddeus, Astron. Astrophys. 369, L9 (2000)

    ADS  Google Scholar 

  25. M. Guélin, S. Muller, J. Cernicharo, M.C. McCarthy, P. Thaddeus, Astron. Astrophys. 426, L49 (2004)

    Article  ADS  Google Scholar 

  26. L.M. Ziurys, C. Savage, J.L. Highberger, A.J. Apponi, M. Guélin, J. Cernicharo, Astrophys. J. 564, 45 (2002)

    Article  ADS  Google Scholar 

  27. B.T. Soifer, R.C. Puetter, R.W. Russell, S.P. Willner, P.M. Harvey, F.C. Gillett, Astrophys. J. 232, 53 (1979)

    Article  ADS  Google Scholar 

  28. P.P. Tennekes, J. Harju, M. Juvela, L.V. Tóth, Astron. Astrophys. 456, 1037 (2006)

    Article  ADS  Google Scholar 

  29. W.M. Irvine, F.P. Schloerb, Astrophys. J. 282, 516 (1984)

    Article  ADS  Google Scholar 

  30. J.E. Dickens, W.M. Irvine, M. Ohishi, M. Ikeda, S. Ishikawa, A. Nummelin, A. Hjalmarson, Astrophys. J. 489, 753 (1997)

    Article  ADS  Google Scholar 

  31. J. Cernicharo, A.M. Heras, A.G.G.M. Tielens, P.R. Pardo, F. Herpin, M. Guélin, L.B.F.M. Waters, Astrophys. J. 546, L123 (2001)

    Article  ADS  Google Scholar 

  32. J.M. Hollis, A.J. Remijan, P.R. Jewell, F.J. Lovas, Astrophys. J. 642, 933 (2006)

    Article  ADS  Google Scholar 

  33. P. Thaddeus, S.E. Cummins, R.A. Linke, Astrophys. J. 283, 45 (1984)

    Article  ADS  Google Scholar 

  34. P. Thaddeus, J.M. Vrtilek, C.A. Gottlieb, Astrophys. J. 299, 63 (1985)

    Article  ADS  Google Scholar 

  35. J. Cami, J. Bernard-Salas, E. Peeters, S.E. Malek, Science 329, 1180 (2010)

    Article  ADS  Google Scholar 

  36. O. Berné, G. Mulas, C. Joblin, Astron. Astrophys. 550, L4 (2013)

    Article  ADS  Google Scholar 

  37. P. Thaddeus, J.M. Vrtilek, C.A. Gottlieb, Astrophys. J. 299, 63 (1985)

    Article  ADS  Google Scholar 

  38. J. Cami, J. Bernard-Salas, E. Peeters, S.E. Malek, Science 329, 1180 (2010)

    Article  ADS  Google Scholar 

  39. O. Berné, G. Mulas, C. Joblin, Astron. Astrophys. 550, L4 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel E. Etim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etim, E.E., Arunan, E. Interstellar isomeric species: Energy, stability and abundance relationship. Eur. Phys. J. Plus 131, 448 (2016). https://doi.org/10.1140/epjp/i2016-16448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16448-0

Navigation