Skip to main content
Log in

Computational study of interaction of alkali metals with C3N nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Interaction of the alkali metals (AMs) like lithium (Li), sodium (Na), and potassium (K) with defective and non-defective (8,0) C3N nanotubes (C3NNT) have been investigated using the first-principles study. In addition to structural properties, we have also studied the electronic properties, charge transfer, and work function of the AM-C3NNT complexes. AMs are adsorbed on hollow sites, regardless of the initial positions. Upon the adsorption of AMs, the structures exhibit semiconducting behavior. Furthermore, interaction of Li atom can be explained by Dewar model, whereas for the other atoms there are different explanations. For all metal adsorbates, the direction of the charge transfer is from adsorbate to adsorbent, because of their high surface reactivity. The results showed that the nanotube with carbon vacancy is the most favorite adsorbent. Our findings also indicated that the enhancement in absolute adsorption energy is in order of Li > K > Na. It is noteworthy that clustering of AM atoms on the nanotubes with and without defects is not expected. It is worthy that C3NNT is a better adsorbent for AM atoms than CNT, graphene, C60, and B80.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Janiak C, Hoffmann R, Sjovall P, Kasemo B (1993) The potassium promoter function in the oxidation of graphite: an experimental and theoretical study. Langmuir 9(12):3427–3440

    Article  CAS  Google Scholar 

  2. Chen P, Wu X, Lin J, Tan K (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285(5424):91–93

    Article  CAS  Google Scholar 

  3. Lan J, Cao D, Wang W, Smit B (2010) Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano 4(7):4225–4237

    Article  CAS  Google Scholar 

  4. Yang Z, Ni J (2012) Li-doped BC3 sheet for high-capacity hydrogen storage. Appl Phys Lett 100(18):183109

    Article  Google Scholar 

  5. Yoo E, Kim J, Hosono E, H-s Z, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282

    Article  CAS  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  7. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  CAS  Google Scholar 

  8. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48(3):575–586

    Article  CAS  Google Scholar 

  9. Mabena LF, Ray SS, Mhlanga SD, Coville NJ (2011) Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl Nanosci 1(2):67–77

    Article  CAS  Google Scholar 

  10. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8):1429–1437

    Article  CAS  Google Scholar 

  11. Jalili S, Molani F, Schofield J (2013) Ti-coated BC2N nanotubes as hydrogen storage materials. Can J Chem 91(999):1–7

    Google Scholar 

  12. Pan H, Zhang Y-W, Shenoy VB, Gao H (2011) Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property. Nanoscale Res Lett 6(1):97

    Article  Google Scholar 

  13. Kong XK, Chen QW, Lun ZY (2014) The influence of N‐doped carbon materials on supported Pd: enhanced hydrogen storage and oxygen reduction performance. ChemPhysChem 15(2):344–350

    Article  CAS  Google Scholar 

  14. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342

    Article  CAS  Google Scholar 

  15. Bu Y, Chen Z, Yu J, Li W (2012) A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion. Electrochim Acta 88:294–300

    Article  Google Scholar 

  16. Bulusheva L, Okotrub A, Kurenya A, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12):4013–4023

    Article  CAS  Google Scholar 

  17. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

  18. Azevedo S, Machado M, Kaschny J (2011) Stability and electronic states of NC3 nanoribbons. Appl Phys A 104(1):55–60

    Article  CAS  Google Scholar 

  19. Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1(9):457–460

    Article  CAS  Google Scholar 

  20. Hales J, Barnard AS (2009) Thermodynamic stability and electronic structure of small carbon nitride nanotubes. J Phys Condens Matter 21(14):144203

    Article  Google Scholar 

  21. Jalili S, Molani F, Akhavan M, Schofield J (2014) Role of defects on structural and electronic properties of zigzag C3N nanotubes: a first-principle study. Phys E: Low-dimensional Syst Nanostruct 56:48–54

    Article  CAS  Google Scholar 

  22. Sandré É, Pickard CJ, Colliex C (2000) What are the possible structures for CNx compounds? The example of C3N. Chem Phys Lett 325(1):53–60

    Article  Google Scholar 

  23. Kim E, Chen C, Köhler T, Elstner M, Frauenheim T (2001) Theoretical study of a body-centered-tetragonal phase of carbon nitride. Phys Rev B 64(9):094107

    Article  Google Scholar 

  24. Azevedo S, De Paiva R (2006) Structural stability and electronic properties of carbon-boron nitride compounds. EPL (Europhys Lett) 75(1):126

    Article  CAS  Google Scholar 

  25. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  26. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  28. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892

    Article  Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  30. Löwdin PO (1950) On the non‐orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys 18(3):365–375

    Article  Google Scholar 

  31. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  32. Zhou Z, Gao X, Yan J, Song D, Morinaga M (2004) A first-principles study of lithium absorption in boron-or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12):2677–2682

    Article  CAS  Google Scholar 

  33. Chan KT, Neaton J, Cohen ML (2008) First-principles study of metal adatom adsorption on graphene. Phys Rev B 77(23):235430

    Article  Google Scholar 

  34. Sahin H, Peeters FM (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys Rev B 87(8):085423

    Article  Google Scholar 

  35. Chandrakumar K, Ghosh SK (2008) Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett 8(1):13–19

    Article  CAS  Google Scholar 

  36. Li Y, Zhou G, Li J, Gu B-L, Duan W (2008) Alkali-metal-doped B80 as high-capacity hydrogen storage media. J Phys Chem C 112(49):19268–19271

    Article  CAS  Google Scholar 

  37. Mingos DMP (2001) A historical perspective on Dewar’s landmark contribution to organometallic chemistry. J Organomet Chem 635(1):1–8

    Article  CAS  Google Scholar 

  38. Zhou W, Yildirim T, Durgun E, Ciraci S (2007) Hydrogen absorption properties of metal-ethylene complexes. Phys Rev B 76(8):085434

    Article  Google Scholar 

Download references

Acknowledgments

Computations were performed on the General Purpose Cluster (GPC) supercomputer at the SciNet High Performance Computing (HPC) Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund − Research Excellence; and the University of Toronto. Further, we are grateful to Sanandaj Branch, Islamic Azad University Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Molani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molani, F., Jalili, S. & Schofield, J. Computational study of interaction of alkali metals with C3N nanotubes. J Mol Model 21, 20 (2015). https://doi.org/10.1007/s00894-014-2566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2566-0

Keywords

Navigation