Skip to main content
Log in

Theoretical Study on the Structures of Single-Atom M (M = Fe, Co, and Ni) Adsorption Outside and Inside the Defect Carbon Nanotubes

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Single-atom confinement inside carbon nanotubes has attracted much attention in many fields. This class of materials may not only serve as a catalyst but also as a support material for certain reactions. In this paper, we have studied the single-walled carbon nanotubes (SWCNT), single vacancy defect (SV), and Stone–Wales defect (SW) carbon nanotubes with Fe, Co, and Ni atom by both inside and outside adsorption structures in density function theory (DFT). Our results reveal that the binding abilities of atomic Fe, Co, Ni onto the internal and external surfaces of the SWCNT, SV, and SW are in following orders by metals: Ni > Co > Fe. The adsorption energies of SV toward Fe, Co, and Ni are more stable than those of SWCNT and SW, which can be attributed to the three active carbon sites created by a C atom removing, while the SWCNT and SW demonstrate similar adsorption energy due to the similar structure. Generally, the stability of external adsorption structures is stronger than those of internal adsorption structures, but as for the SW, the stability of internal and external adsorption structures is close, which means that the defects have improved the confinement of carbon nanotubes to M (M = Fe, Co, Ni).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Peng, B. Lu, and S. Chen, Adv. Mater. Adv. Mater. 30, 1801995 (2018).

  2. Q. Wang, D. Zhang, Y. Chen, et al., ACS Sustain. Chem. Eng. 7, 6430 (2019).

    Article  CAS  Google Scholar 

  3. M. M. Millet, G. Algara-Siller, S. Wrabetz, et al., J. Am. Chem. Soc. 141, 2451 (2019).

    Article  CAS  Google Scholar 

  4. J. Amsler, B. B. Sarma, G. Agostini, et al., J. Am. Chem. Soc. 142, 5087 (2020).

    Article  CAS  Google Scholar 

  5. K. Yuan, S. Feng, F. Zhang, et al., Ind. Eng. Chem. Res. 59, 19680 (2020).

    Article  CAS  Google Scholar 

  6. C. Shao, C. Rui, J. Liu, et al., Ind. Eng. Chem. Res. 59, 19593 (2020).

    Article  CAS  Google Scholar 

  7. G. S. Tulevski and A. L. Falk, Adv. Funct. Mater. 30, 1909448 (2020).

  8. J. Banerjee and K. Dutta, Polym. Compos. 40, 4473 (2019).

    Article  CAS  Google Scholar 

  9. X. Lu, Z. Chen, and P. V. R. Schleyer, J. Am. Chem. Soc. 127, 20 (2005).

    Article  CAS  Google Scholar 

  10. T. C. Dinadayalane, J. S. Murray, M. C. Concha, et al., J. Chem. Theory Comput. 6, 1351 (2010).

    Article  CAS  Google Scholar 

  11. T. C. Dinadayalane and J. Leszczynski, Chem. Phys. Lett. 434, 86 (2007).

    Article  CAS  Google Scholar 

  12. A. L. Arokiyanathan, N. Panjulingam, and S. Lakshmipathi, J. Phys. Chem. C 124, 7229 (2020).

    Article  CAS  Google Scholar 

  13. L. Li, S. Reich, and J. Roberton, Phys. Rev. B 72, 184109 (2005).

  14. W. Wu, W. Zhang, Y. Long, et al., Mol. Catal. 497, 111226 (2020).

  15. N. Gyanchani, S. Pawar, P. Maheshwary, et al., Mater. Sci. Eng. B 261, 114772 (2020).

  16. M. Vichel, M. Busch, and K. Laasonen, ChemCatChem 12, 1436 (2020).

    Article  Google Scholar 

  17. X. Zhang, S. Zhang, Y. Yang, et al., Adv. Mater. 32, 1906905 (2020).

  18. P. A. Loginov, U. A. Zhassay, M. Y. Bychkova, et al., Int. J. Refract. Met. Hard Mater. 92, 105289 (2020).

  19. L. Wu, Y. Lu, W. Shao, et al., Adv. Mater. Interfaces 7, 2000736 (2020).

  20. X. Chen, F. Ge, J. Chang, et al., Int. J. Energ. Res. 43, 7375 (2019).

    CAS  Google Scholar 

  21. G. Mei, L. Cui, Z. Dou, et al., Electrochim. Acta 358, 136918 (2020).

  22. Q. Liu, H. Zhang, J. Xu, et al., Inorg. Chem. 57, 15610 (2018).

    Article  CAS  Google Scholar 

  23. X. J. Liu, Y. D. Sun, X. Yin, et al., Energy Fuel 34 (2020).

  24. J. Liu, J. Lan, L. Yang, et al., ACS Sustain. Chem. Eng. 7, 6541 (2019).

    Article  CAS  Google Scholar 

  25. L. Cao, Y. Shao, H. Pan, et al., J. Phys. Chem. C 124, 11301 (2019).

    Article  Google Scholar 

  26. M. A. Kazakova, D. M. Morales, C. Andronescu, et al., Catal. Today 357, 259 (2020).

    Article  CAS  Google Scholar 

  27. J. Yi, X. Liu, P. Liang, et al., Organometallics 38, 1186 (2019).

    Article  CAS  Google Scholar 

  28. S. Guo, X. Pan, H. Gao, Z. Yang, et al., Chem. Eur. J. 16, 5379 (2020).

    Article  Google Scholar 

  29. H. Friedrich, S. Guo, P. E. de Jongh, et al., ChemSusChem 4, 975 (2011).

    Article  Google Scholar 

  30. J. Chen, W. Zhou, Z. Zhu, et al., Carbon 49, 2022 (2011).

    Article  Google Scholar 

  31. X. Lin, X. Wang, L. Li, et al., ACS Sustain. Chem. Eng. 5, 9709 (2017).

    Article  CAS  Google Scholar 

  32. F. Pan, B. Li, E. Sarnello, et al., ACS Nano 14, 5506 (2020).

    Article  CAS  Google Scholar 

  33. Q. Fu, W. Li, Y. Yao, et al., Science (Washington, DC, U. S.) 328 (2010).

  34. Q. Fu, F. Yang, and X. Bao, Acc. Chem. Res. 46, 1692 (2013).

    Article  CAS  Google Scholar 

  35. W. Chen, X. Pan, and X. Bao, J. Am. Chem. Soc. 129, 7421 (2007).

    Article  CAS  Google Scholar 

  36. Z. Yang, J. Qian, A. Yu, et al., Proc. Natl. Acad. Sci. U. S. A. 116, 6659 (2019).

    Article  CAS  Google Scholar 

  37. H. Zhang, J. Wang, Z. Zhao, et al., Green Chem. 20, 3521 (2018).

    Article  CAS  Google Scholar 

  38. P. Su, M. Zhou, G. Ren, et al., J. Mater. Chem. A 7, 24408 (2019).

    Article  CAS  Google Scholar 

  39. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  40. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  41. Y. Tang, Z. Yang, and X. Dai, Phys. Chem. Chem. Phys. 14, 16566 (2012).

    Article  CAS  Google Scholar 

  42. J. Zhao, Y. Chen, and H. Fu, Theor. Chem. Acc. 131, 1 (2012).

    Article  CAS  Google Scholar 

  43. M. Piacenza and S. Grimme, J. Comput. Chem. 25, 83 (2004).

    Article  CAS  Google Scholar 

  44. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This article was funded by the Natural Science Foundation of Gansu (no. 20JR5RA199) and National Natural Science Foundation (no. 21865007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Chun Tong.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QY., Nan, G., Chen, YY. et al. Theoretical Study on the Structures of Single-Atom M (M = Fe, Co, and Ni) Adsorption Outside and Inside the Defect Carbon Nanotubes. Russ. J. Phys. Chem. 96 (Suppl 1), S145–S152 (2022). https://doi.org/10.1134/S0036024422140254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422140254

Keywords:

Navigation