Skip to main content
Log in

A theoretical investigation of one-dimensional lithium-bonded chain: enhanced first hyperpolarizability and little red-shift

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a theoretical investigation of the electric properties of two kinds of one-dimensional lithium bonded chains: (NC-Li)n and (NC-CC-Li)n (n = 1–8). The resulting (NC-Li)n and (NC-CC-Li)n were found to exhibit enhanced first hyperpolarizabilities (β 0) with increasing n, and a slight change in the absorption maximum wavelength λmax at the crucial transition. Comparing with (NC-Li)n, (NC-CC-Li)n exhibited particularly drastically enhanced β 0 values due to clearly enhanced coupled oscillators and double-degenerated charge transitions. β 0 is known to be the microscopic origin of the second-order non-linear optical (NLO) property, and λmax is an approximate measure of the transparency achievable, thus both are important indices of high-performance NLO molecules. Therefore, our investigations into one-dimensional lithium bond chains will be beneficial to understanding the relationship between β 0 and λmax, thus aiding the design of one-dimensional NLO materials with excellent transparence-efficiency.

One-dimensional lithium bond complexes (NC-Li)n and (NC-CC-Li)n showing the π-Li-bond-π interactions investigated. The resulting (NC-Li)n and (NC-CC-Li)n exhibited enhanced first hyperpolarizabilities (β 0) with increasing n, and a slight change in the absorption maximum wavelength λmax at the crucial transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. Coe BJ, Jones LA, Brunschwig BS, Asselberghs I, Clays K, Persoons A (2003) Highly unusual effects of π-conjugation extension on the molecular linear and quadratic nonlinear optical properties of ruthenium(II) ammine complexes. J Am Chem Soc 125:862–863

    Article  CAS  Google Scholar 

  2. Champagne B, Perpete EA, Jacquemin D, Gisbergen SJA, Baerends EJ, Ghaoui CS, Robins KA, Kirtman B (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push–pull π-conjugated systems. J Phys Chem A 104:4755–4763

    Article  CAS  Google Scholar 

  3. Boyd RW (1992) Nonlinear optics. Academic, San Diego

    Google Scholar 

  4. Zyss J (1994) Molecular nonlinear optics: materials, physics and DeVices. Academic, New York

    Google Scholar 

  5. Nalwa HS, Miyata S (1997) Nonlinear optics of organic molecules and polymers. CRC, Boca Raton

    Google Scholar 

  6. Torre G, Vázquez P, López FA, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723

    Article  Google Scholar 

  7. Leu WCW, Hartley CS (2013) A push–pull macrocycle with both linearly conjugated and cross-conjugated bridges. Org Lett 15:3762–3765

    Article  CAS  Google Scholar 

  8. Kaur P, Kaur M, Depotter G, Cleuvenbergen SV, Asselberghs I, Clays K, Singh K (2012) Thermally stable ferrocenyl “push–pull” chromophores with tailorable and switchable second-order non-linear optical response: synthesis and structure–property relationship. J Mater Chem 22:10597–10608

    Article  CAS  Google Scholar 

  9. Lacroix PG, Malfant I, Real J, Rodriguez V (2013) From magnetic to nonlinear optical switches in spin-crossover complexes. Eur J Inorg Chem 2013:615–627

  10. Zhang X, Li M, Shi Z, Cui Z (2011) Prepare organic/inorganic hybrid nonlinear optical material containing two-dimensional spindle-type chromophores. Mater Lett 65:1404–1406

    Article  CAS  Google Scholar 

  11. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  12. Moylan CR, Twieg RJ, Lee VY, Swanson SA, Betterton KM, Miller RD (1993) Nonlinear optical chromophores with large hyperpolarizabilities and enhanced thermal stabilities. J Am Chem Soc 115:12599–12600

    Article  CAS  Google Scholar 

  13. Shenning APHJ, Kinbinger AFM, Biscari F, Cavallini M, Cooper HJ, Derrick PJ, Feast WJ, Lazzaroni R, Leclère P, McDonnell LA, Meijer EW, Meskers SC (2002) Supramolecular organization of α, α‘-disubstituted sexithiophenes. J Am Chem Soc 124:1269–1275

    Article  Google Scholar 

  14. Quintiliani M, Pérez-Moreno J, Asselberghs I, Vázquez P, Clays K, Torres T (2010) Synthesis and nonlinear optical properties of tetrahedral octupolar phthalocyanine-based systems. J Phys Chem B 114:6309–6315

    Article  CAS  Google Scholar 

  15. Poronik YM, Hugues V, Blanchard-Desce M, Gryko DT (2012) Octupolar merocyanine dyes: a new class of nonlinear optical chromophores. Chem Eur 18:9258–9266

    Article  CAS  Google Scholar 

  16. Zrig S, Koeckelberghs G, Verbiest T, Andrioletti B, Rose E, Persoons A, Asselberghs I, Clays K (2007) Λ-type regioregular oligothiophenes: synthesis and second-order NLO properties. J Org Chem 72:5855–5858

    Article  CAS  Google Scholar 

  17. Moylan CR, Ermer S, Lovejoy SM, McComb I, Leung DS, Wortmann R, Krdmer P, Twieg RJ (1996) Dicyanomethylene)pyran derivatives with C2v symmetry: an unusual class of nonlinear optical chromophores. J Am Chem Soc 118:12950–12955

    Article  CAS  Google Scholar 

  18. Yang M, Champagne B (2003) Large off-diagonal contribution to the second-order optical nonlinearities of Λ-shaped molecules. J Phys Chem A 107:3942–3951

    Article  CAS  Google Scholar 

  19. Méreau R, Castet F, Botek E, Champagne B (2009) Effect of the dynamical disorder on the second-order nonlinear optical responses of helicity-encoded polymer strands. J Phys Chem A 113:6552

    Article  Google Scholar 

  20. Shigorin DN (1959) Infra-red absorption spectra study of H-bonding and of metal-element bonding. Spectrochim Acta 14:198–212

    Article  CAS  Google Scholar 

  21. Ault BS, Pimental GC (1975) Matrix isolation infrared studies of lithium bonding. J Phys Chem 79:621

    Article  CAS  Google Scholar 

  22. Sannigrahi AB, Kar T, Niyogi BG, Hobza P, Schleyer PR (1990) The lithium bond reexamined. Chem Rev 90:1061

    Article  CAS  Google Scholar 

  23. Tong J, Li Y, Wu D, Li ZR, Huang XR (2010) Lithium bonding interaction hyperpolarizabilities of various Li-bond dimers. J Phys Chem A 114:5888–5893

    Article  CAS  Google Scholar 

  24. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2004) Lithium bonding interaction hyperpolarizabilities of various Li-bond dimers. J Phys Chem A 108:2464

    Article  CAS  Google Scholar 

  25. Aakeröy CB, Beatty AM, Helfrich BA (2001) Total synthesis” supramolecular style: design and hydrogen-bond-directed assembly of ternary supermolecules. Angew Chem Int Ed 40:3240–3242

    Article  Google Scholar 

  26. Solomon PM (1973) Interstellar molecules. Phys Today 26:32–40

    Article  CAS  Google Scholar 

  27. Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F, Raaen E, Way SH (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784

    Article  CAS  Google Scholar 

  28. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  CAS  Google Scholar 

  29. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  30. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (THEOCHEM) 169:41

    Article  Google Scholar 

  31. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  32. Yamazaki S, Taketsugu T (2012) Photoreaction channels of the guanine–cytosine base pair explored by long-range corrected TDDFT calculations. Phys Chem Chem Phys 14:8866–8877

    Article  CAS  Google Scholar 

  33. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  34. Frisch MJ et al (2010) Gaussian 09W, revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Politzer P, Murraya JS, Clark T (2012) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  Google Scholar 

  36. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput and Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  37. Tong J, Li Y, Wu D, Wu ZJ (2013) Theoretical study of substitution effect in superalkali OM3 (M = Li, Na, K). Chem Phys Lett 575:27

    Article  CAS  Google Scholar 

  38. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  39. Ma F, Li ZR, Xu HL, Li ZJ, Li ZS, AokiY GFL (2008) Lithium salt electride with an excess electron pair—a class of nonlinear optical molecules for extraordinary first hyperpolarizability. J Phys Chem A 112:11462–11467

    Article  CAS  Google Scholar 

  40. Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) Lithiation and Li-doped effects of [5]cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21303065 and 21473026), the Natural Science Foundation of Anhui Province (No. 10040606Q55) and Anhui University Natural Science Research Project (No.KJ2013B242)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Ma or Hongliang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

NBO charge, the hyperpolarizabilities of (NC-Li)4 and (NC-CC-Li)4 in different applied electric fields, a comparison of the results between CIS and TD-DFT(LC-BLYP), and electrostatic potentials on (NC -Li)n. (DOC 1418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Bai, D. & Xu, H. A theoretical investigation of one-dimensional lithium-bonded chain: enhanced first hyperpolarizability and little red-shift. J Mol Model 20, 2532 (2014). https://doi.org/10.1007/s00894-014-2532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2532-x

Keywords

Navigation