Skip to main content
Log in

Theoretical study of electronic and nonlinear optical properties of Janus all-cis-1,2,3,4,5,6-hexafluorocyclohexane derivative with an extended π conjugation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

More and more scientists are paying attention to Janus all-cis-1,2,3,4,5,6-hexafluorocyclohexane (hereafter system 1) due to interesting structure and unique property. The question of how to design high-performance nonlinear optical (NLO) materials based on system 1 is studied. In this work, by means of ab initio calculations, a new series of system 1 derivatives with an extended π conjugation have been theoretically designed by introducing –(CH=CH)n–NO2 or –(CH=CH)n–NH2 (n = 1–4, 8, 12) chain into system 1. The results indicate that introducing –(CH=CH)n–NO2 or –(CH=CH)n–NH2 chain leads to small transition energy, which can bring a significant enhancement of the first hyperpolarizability. It is expected that these novel systems exhibit the large first hyperpolarizabilities up to 4.17 × 104 au. Moreover, the effect of different substitutions on the NLO responses is investigated. With increasing the first hyperpolarizability, the –(CH=CH)n–NH2 chain has an advantage over the –(CH=CH)n–NO2 chain. It is hoped that this work can provide theoretical help for the design of new nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keddie NS, Slawin AMZ, Lebl T, Philp D, O’Hagan D (2015) Nat Chem 7:483–488

    CAS  PubMed  Google Scholar 

  2. Cormanich RA, Keddie NS, Rittner R, O’Hagan D, Bühl M (2015) Phys Chem Chem Phys 17:29475–29478

    CAS  PubMed  Google Scholar 

  3. Pratik SM, Nijamudheen A, Datta A (2016) ChemPhysChem 17:1–10

    Google Scholar 

  4. Sun WM, Ni BL, Wu D, Lan JM, Li CY, Li Y, Li ZR (2017) Organometallics 36:3352–3359

    CAS  Google Scholar 

  5. Cornelis D, Franz E, Asselberghs I, Clays K, Verbiest T, Koeckelberghs G (2011) J Am Chem Soc 133:1317–1327

    CAS  PubMed  Google Scholar 

  6. Coe BJ, Fielden J, Foxon SP, Asselberghs I, Clays K, Brunschwig BS (2010) Inorg Chem 49:10718

    CAS  PubMed  Google Scholar 

  7. Green KA, Cifuentes MP, Corkery C, Smaoc M, Humphrey MG (2009) Angew Chem Int Ed 48:7867–7870

    CAS  Google Scholar 

  8. Ray PC (2010) Chem Rev 110:5332–5365

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Desce MB et al (1997) Chem Eur J 3:1091–1104

    Google Scholar 

  10. Khan MU, Khalid M, Ibrahim M, Braga CAA, Safdar M, Al-Saadi AA, Janjua MRSA (2018) J Phys Chem C 122:4009–4018

    CAS  Google Scholar 

  11. Knoppe S, Häkkinen H, Verbiest T, Clays K (2018) J Phys Chem C 122:4019–4028

    CAS  Google Scholar 

  12. Biroli AO, Tessore F, Righetto S, Forni A, Macchioni A, Rocchigiani L, Pizzotti M, Carlo G (2017) Inorg Chem 56:6438–6450

    Google Scholar 

  13. Dragonetti C, Colombo A, Fontani M, Marinotto D, Nisic F, Righetto S, Roberto D, Tintori F, Fantacci S (2016) Organometallics 35:1015–1021

    CAS  Google Scholar 

  14. Muhammad S, Xu HL, Zhong RL, Su ZM, Al-Sehemi AG, Irfan A (2013) J Mater Chem C 1:5439–5449

    CAS  Google Scholar 

  15. Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2013) J Phys Chem C 117:10039–10044

    CAS  Google Scholar 

  16. Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014) J Mater Chem C 2:306–311

    CAS  Google Scholar 

  17. Wang SJ, Wang YF, Cai CX (2015) J Phys Chem C 119:5589–5595

    CAS  Google Scholar 

  18. Wang SJ, Wang YF, Cai CX (2015) J Phys Chem C 119:16256–16262

    CAS  Google Scholar 

  19. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) J Am Chem Soc 127:10977–10981

    CAS  PubMed  Google Scholar 

  20. Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2013) Inorg Chem 53:349–358

    PubMed  Google Scholar 

  21. Maria M, Iqbal J, Ayub K (2016) J Alloys Compd 687:976–983

    CAS  Google Scholar 

  22. Wang L, Wang WY, Fang XY, Zhu CL, Qiu YQ (2016) Org Electron 33:290–299

    CAS  Google Scholar 

  23. Jiang D, Xue Z, Li YJ, Liu HB, Yang WS (2013) J Mater Chem C 1:5694–5700

    CAS  Google Scholar 

  24. Vijay Solomon R, Veerapandian P, Angeline Vedha S, Venuvanalingam P (2012) J Phys Chem A 116:4667–4677

    PubMed  Google Scholar 

  25. Schulz M, Tretiak S, Chernyak V, Mukamel S (2000) J Am Chem Soc 122:452–459

    CAS  Google Scholar 

  26. Priyadarshy S, Therien MJ, Beratan DN (1996) J Am Chem Soc 118:1504–1510

    Google Scholar 

  27. Xiao DQ, Bulat FA, Yang WT, Beratan DN (2008) Nano Lett 8:2814–2818

    CAS  PubMed  Google Scholar 

  28. Coe JB, Fielden J, Foxon SP, Brunschwig BS, Asselberghs I, Clays K, Samoc A, Samoc M (2010) J Am Chem Soc 132:3496–3513

    CAS  PubMed  Google Scholar 

  29. Al-Yasari A, Steerteghem NV, Kearns H, Moll HE, Faulds K, Wright JA, Brunschwig BS, Clays K, Fielden J (2017) Inorg Chem 56:10181–10194

    CAS  PubMed  Google Scholar 

  30. Fillaut JL, Perruchon J, Blanchard P, Roncali J, Golhen S, Allain M, Migalsaka-Zalas A, Kityk IV, Sahraoui B (2005) Organometallics 24:687–695

    CAS  Google Scholar 

  31. Durand RJ, Achelle S, Gauthier S, Cabon N, Ducamp M, Kahlal S, Saillard JY, Barsella A, Guen FRL (2018) Dyes Pigm 155:68–74

    CAS  Google Scholar 

  32. Torres M, Semin S, Razdolski I, Xu JL, Elemans JAAW, Rasing T, Rowan AE, Nolte RJM (2005) Chem Commun 51:2855–2858

    Google Scholar 

  33. Yu GT, Zhao XG, Niu M, Huang XR, Zhang H, Chen W (2013) J Mater Chem C 1:3833–3841

    CAS  Google Scholar 

  34. Chen LW, Yu GT, Chen W, Tu CY, Zhao XG (2014) Phys Chem Chem Phys 16:10933–10942

    CAS  PubMed  Google Scholar 

  35. Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) J Phys Chem B 109:601–608

    CAS  PubMed  Google Scholar 

  36. Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) J Phys Chem A 109:2920–2924

    CAS  PubMed  Google Scholar 

  37. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970

    CAS  PubMed  Google Scholar 

  38. Wu HQ, Zhong RL, Sun SL, Xu HL, Su ZM (2014) J Phys Chem C 118:6952–6958

    CAS  Google Scholar 

  39. Kulshrestha P, Sukumar N, Murray JS, Giese RF, Wood TD (2009) J Phys Chem A 113:756–766

    CAS  PubMed  Google Scholar 

  40. Politzer P, Murray JS (2012) Theor Chem Acc 131:1114

    Google Scholar 

  41. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    CAS  PubMed  Google Scholar 

  42. Politzer P, Murray JS (2013) CrystEngComm 15:3145–3150

    CAS  Google Scholar 

  43. Peralta-lnga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Nano Lett 3:21

    Google Scholar 

  44. Politzer P, Murray JS (2017) J Comput Chem. https://doi.org/10.1002/jcc.24891

    Article  PubMed  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford

  46. Dennington R, Keith TA, Millam JM (2016) GaussView version 6

  47. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    PubMed  Google Scholar 

  48. Zhou ZJ, Li XP, Ma F, Liu ZB, Li ZR, Huang XR, Sun CC (2011) Chem Eur J 17:2414–2419

    CAS  PubMed  Google Scholar 

  49. Cheng LT, Tam W, Stevenson SH, Meridith GR, Rikken G, Marder SR (1991) J Phys Chem 95:10631–10643

    CAS  Google Scholar 

  50. Wang HQ, Wang L, Xia YY, Ye JT, Zhao HY, Qiu YQ (2017) J Phys Chem C 121:16470–16480

    CAS  Google Scholar 

  51. Wang WY, Wang L, Ma NN, Zhu CL, Qiu YQ (2015) Dalton Trans 44:10078–10088

    CAS  PubMed  Google Scholar 

  52. Bahers TL, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506

    PubMed  Google Scholar 

  53. Morley JO (1991) J Chem Soc Faraday Trans 87:3009–3013

    Google Scholar 

  54. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

    CAS  Google Scholar 

  55. Oudar JL (1977) J Chem Phys 67:446–457

    CAS  Google Scholar 

  56. Datta A, Pati SK (2006) Chem Soc Rev 35:1305–1323

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Development Foundation of Fujian University of Technology (GY-Z160127), the Education Department of Fujian Province(GY-Z17105, JAT170393), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015-779) and Fujian Province Science and Technology Innovation Leaders (GY-Z17142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Dong Song or Qian-Ting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JJ., Song, YD. & Wang, QT. Theoretical study of electronic and nonlinear optical properties of Janus all-cis-1,2,3,4,5,6-hexafluorocyclohexane derivative with an extended π conjugation. Theor Chem Acc 139, 4 (2020). https://doi.org/10.1007/s00214-019-2517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2517-z

Keywords

Navigation