Skip to main content
Log in

Optimal portfolio liquidation in target zone models and catalytic superprocesses

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We study optimal buying and selling strategies in target zone models. In these models, the price is modelled by a diffusion process which is reflected at one or more barriers. Such models arise, for example, when a currency exchange rate is kept above a certain threshold due to central bank interventions. We consider the optimal portfolio liquidation problem for an investor for whom prices are optimal at the barrier and who creates temporary price impact. This problem is formulated as the minimization of a cost–risk functional over strategies that only trade when the price process is located at the barrier. We solve the corresponding singular stochastic control problem by means of a scaling limit of critical branching particle systems, which is known as a catalytic superprocess. In this setting, the catalyst is given by the barriers of the price process. For the cases in which the unaffected price process is a reflected arithmetic or geometric Brownian motion with drift, we moreover give a detailed financial justification of our cost functional by means of an approximation with discrete-time models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almgren, R.: Optimal execution with nonlinear impact functions and trading-enhanced risk. Appl. Math. Finance 10, 1–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, R.: Optimal trading with stochastic liquidity and volatility. SIAM J. Financ. Math. 3, 163–181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren, R., Chriss, N.: Value under liquidation. Risk 12, 61–63 (1999)

    Google Scholar 

  4. Almgren, R., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–39 (2000)

    Google Scholar 

  5. Almgren, R., Thum, C., Hauptmann, E., Li, H.: Direct estimation of equity market impact. Risk 18(7), 58–62 (2005)

    Google Scholar 

  6. Ball, C., Roma, A.: Detecting mean reversion within reflecting barriers: application to the European Exchange Rate Mechanism. Appl. Math. Finance 5, 1–15 (1998)

    Article  MATH  Google Scholar 

  7. Bertola, G., Caballero, R.J.: Target zones and realignments. Am. Econ. Rev. 82, 520–536 (1992)

    Google Scholar 

  8. Bertsimas, D., Lo, A.: Optimal control of execution costs. J. Financ. Mark. 1, 1–50 (1998)

    Article  Google Scholar 

  9. Csáki, E.: An integral test for the supremum of Wiener local time. Probab. Theory Relat. Fields 83, 207–217 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawson, D.A., Fleischmann, K.: A super-Brownian motion with a single point catalyst. Stoch. Process. Appl. 49, 3–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delmas, J.-F.: Super-mouvement brownien avec catalyse. Stoch. Stoch. Rep. 58, 303–347 (1996)

    Article  MathSciNet  Google Scholar 

  12. Dynkin, E.B.: An Introduction to Branching Measure-Valued Processes. CRM Monograph Series, vol. 6. Am. Math. Soc., Providence (1994)

    MATH  Google Scholar 

  13. Dynkin, E.B.: Branching with a single point catalyst. In: Cranston, M.C., Pinsky, M. (eds.) Stochastic Analysis, Ithaca, NY, 1993. Proc. Sympos. Pure Math., vol. 57, pp. 423–425. Am. Math. Soc., Providence (1995)

    Chapter  Google Scholar 

  14. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  15. Forsyth, P., Kennedy, J., Tse, S.T., Windcliff, H.: Optimal trade execution: a mean–quadratic-variation approach. J. Econ. Dyn. Control 36, 1971–1991 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gatheral, J.: No-dynamic-arbitrage and market impact. Quant. Finance 10, 749–759 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatheral, J., Schied, A.: Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. Int. J. Theor. Appl. Finance 14, 353–368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Groh, J.: A nonlinear Volterra–Stieltjes integral equation and a Gronwall inequality in one dimension. Ill. J. Math. 24(2), 244–263 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Jong, F.D.: A univariate analysis of EMS exchange rates using a target zone model. J. Appl. Econom. 9, 31–45 (1994)

    Article  Google Scholar 

  20. Krugman, P.R.: Target zones and exchange rate dynamics. Q. J. Econ. 106, 669–682 (1991)

    Article  Google Scholar 

  21. Le Gall, J.: Mouvement brownien, processus de branchement et superprocessus. In: Notes de Cours de DEA, École Normale Supérieure (1994). Available at http://www.math.u-psud.fr/~jflegall/DEA94.pdf

    Google Scholar 

  22. Peskir, G.: On reflecting Brownian motion with drift. In: Proceedings of the 37th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, pp. 1–5. Inst. Systems Control Inform. Engrs., Kyoto (2006)

    Google Scholar 

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Schied, A.: A control problem with fuel constraint and Dawson–Watanabe superprocesses. Ann. Appl. Probab. 23, 2472–2499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Skorokhod, A.V.: Stochastic equations for diffusion processes in a bounded region. Theory Probab. Appl. 6, 264–274 (1961)

    Article  MATH  Google Scholar 

  26. Tse, S.T., Forsyth, P.A., Kennedy, J.S., Windcliff, H.: Comparison between the mean–variance optimal and the mean–quadratic-variation optimal trading strategies. Appl. Math. Finance 20, 415–449 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the Institute for Pure and Applied Mathematics at UCLA for the invitations to the workshop on The Mathematics of High Frequency Financial Markets, during which the research on this paper was completed. The authors furthermore thank Leo Speiser for helping with Fig. 1. A.S. gratefully acknowledges financial support by Deutsche Forschungsgemeinschaft through Research Grant SCHI/3-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Neuman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuman, E., Schied, A. Optimal portfolio liquidation in target zone models and catalytic superprocesses. Finance Stoch 20, 495–509 (2016). https://doi.org/10.1007/s00780-015-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0280-0

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation