Skip to main content
Log in

Model-independent superhedging under portfolio constraints

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In a discrete-time market, we study model-independent superhedging where the semi-static superhedging portfolio consists of three parts: static positions in liquidly traded vanilla calls, static positions in other tradable, yet possibly less liquid, exotic options, and a dynamic trading strategy in risky assets under certain constraints. By considering the limit order book of each tradable exotic option and employing the Monge–Kantorovich theory of optimal transport we establish a general superhedging duality, which admits a natural connection to convex risk measures. With the aid of this duality, we derive a model-independent version of the fundamental theorem of asset pricing. The notion “finite optimal arbitrage profit”, weaker than no-arbitrage, is also introduced. It is worth noting that our method covers a large class of delta and gamma constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. To appear. Available at http://onlinelibrary.wiley.com/doi/10.1111/mafi.12060/full

  2. Aubin, J.-P., Frankowska, H.: Set-valued analysis. In: Modern Birkhäuser Classics. Birkhäuser Boston, Boston (2009). Reprint of the 1990 edition

    Google Scholar 

  3. Bayraktar, E., Zhang, Y., Zhou, Z.: A note on the fundamental theorem of asset pricing under model uncertainty. Risks 2, 425–433 (2014)

    Article  Google Scholar 

  4. Bayraktar, E., Zhou, Z.: On arbitrage and duality under model uncertainty and portfolio constraints. Math. Finance. To appear. Available at http://onlinelibrary.wiley.com/doi/10.1111/mafi.12104/full

  5. Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—a mass transport approach. Finance Stoch. 17, 477–501 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50, 358–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouchard, B., Nutz, M.: Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab. 25, 823–859 (2015)

    Article  MathSciNet  Google Scholar 

  8. Brown, H., Hobson, D., Rogers, L.C.G.: Robust hedging of barrier options. Math. Finance 11, 285–314 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carassus, L., Pham, H., Touzi, N.: No arbitrage in discrete time under portfolio constraints. Math. Finance 11, 315–329 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chau, H.N., Tankov, P.: Market models with optimal arbitrage. SIAM J. Financ. Math. 6, 66–85 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, X., Deelstra, G., Dhaene, J., Vanmaele, M.: Static super-replicating strategies for a class of exotic options. Insur. Math. Econ. 42, 1067–1085 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15, 573–605 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cvitanić, J., Karatzas, I.: Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3, 652–681 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dolinsky, Y., Soner, H.M.: Martingale optimal transport and robust hedging in continuous time. Probab. Theory Relat. Fields 160, 391–427 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dolinsky, Y., Soner, H.M.: Robust hedging with proportional transaction costs. Finance Stoch. 18, 327–347 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  17. Fernholz, D., Karatzas, I.: On optimal arbitrage. Ann. Appl. Probab. 20, 1179–1204 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fernholz, D., Karatzas, I.: Optimal arbitrage under model uncertainty. Ann. Appl. Probab. 21, 2191–2225 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Föllmer, H., Kramkov, D.: Optional decompositions under constraints. Probab. Theory Relat. Fields 109, 1–25 (1997)

    Article  MATH  Google Scholar 

  20. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011)

    Book  Google Scholar 

  22. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 17. Springer, New York (2003)

    MATH  Google Scholar 

  23. Henry-Labordère, P.: Automated option pricing: numerical methods. Int. J. Theor. Appl. Finance 16, 1350042 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hirsch, F., Roynette, B.: A new proof of Kellerer’s theorem. ESAIM Probab. Stat. 16, 48–60 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998)

    Article  MATH  Google Scholar 

  26. Hobson, D., Laurence, P., Wang, T.-H.: Static-arbitrage optimal subreplicating strategies for basket options. Insur. Math. Econ. 37, 553–572 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hobson, D., Laurence, P., Wang, T.-H.: Static-arbitrage upper bounds for the prices of basket options. Quant. Finance 5, 329–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jouini, E., Kallal, H.: Arbitrage in securities markets with short-sales constraints. Math. Finance 5, 197–232 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67, 399–432 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Laurence, P., Wang, T.-H.: Sharp upper and lower bounds for basket options. Appl. Math. Finance 12, 253–282 (2005)

    Article  MATH  Google Scholar 

  31. Michael, E.: Continuous selections. I. Ann. Math. 63, 361–382 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  32. Napp, C.: The Dalang–Morton–Willinger theorem under cone constraints. J. Math. Econ. 39, 111–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rokhlin, D.B.: An extended version of the Dalang–Morton–Willinger theorem with convex portfolio constraints. Teor. Veroyatn. Primen. 49, 503–521 (2004)

    Article  MathSciNet  Google Scholar 

  34. Terkelsen, F.: Some minimax theorems. Math. Scand. 31, 405–413 (1973)

    MATH  MathSciNet  Google Scholar 

  35. Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Pierre Henry-Labordère, Constantinos Kardaras and Jan Obłój for their thoughtful suggestions. We are also thankful to the anonymous referees for their elaborate comments which contribute to the quality of this work.

A. Fahim is partially supported by Florida State University CRC FYAP (315-81000-2424) and the NSF (DMS-1209519).

Y.-J. Huang is partially supported by SFI (07/MI/008 and 08/SRC/FMC1389) and the ERC (278295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fahim.

Appendix: An example related to Definition 2.7(iii)

Appendix: An example related to Definition 2.7(iii)

In this appendix, we provide an example showing that if Definition 2.7(iii) is not satisfied, then the duality in Proposition 3.10 may fail. Let \(d=1\), \(T=2\), and \(x_{0}=1\). Assume that \(\mu_{1}(dx)=\frac{1}{2}\delta_{1}(dx)+\frac{1}{2}\delta_{2}(dx)\) and \(\mu_{2}(dx)=\delta_{2}(dx)\), where \(\delta_{x}\) is the Dirac measure at \(x\in \mathbb {R}\). Thus, \(\varPi=\{\mathbb {Q}\}\) with \({\mathbb {Q}[S_{1}=1,S_{2}=2]}=\mathbb {Q}[S_{1}=2,S_{2}=2]=\frac{1}{2}\). Consider the collection of trading strategies

$$\mathcal {S}=\{\varDelta=(\varDelta_{0},\varDelta_{1}): \varDelta_{0}\equiv0,\ \varDelta_{1}(x)=\alpha 1_{\{x=1\}}(x)\ \hbox{for some}\ \alpha\in[0,1]\}. $$

While \(\mathcal {S}\) trivially satisfies (i) and (ii) in Definition 2.7, (iii) does not hold. To see this, note that \(\mathcal {S}_{c}^{\infty}=\{ (0,0)\}\), and thus for any \(\varDelta\in \mathcal {S}\) with \(\alpha>0\), we have \(\mathbb {Q}[\varDelta\neq(0,0)]= 1/2\). In order to superhedge the claim \(\varPhi(x_{1},x_{2})\equiv0\), we need to find \(n, m\in \mathbb {N}\), \(a, b_{i}, c_{j}\in \mathbb {R}\), \(K_{i}^{1}, K_{j}^{2}\ge0\), and \(\varDelta\in \mathcal {S}\) such that for all \((x_{1},x_{2})\in \mathbb {R}^{2}_{+}\),

$$ 0\le a+\sum_{i=1}^{n}b_{i}(x_{1}-K_{i}^{1})^{+}+\sum_{j=1}^{m}c_{j}(x_{2}-K_{j}^{2})^{+}+\varDelta _{0}(x_{1}-x_{0})+\varDelta_{1}(x_{1})(x_{2}-x_{1}). $$

Since \(\varDelta_{0}\equiv0\) and \(\varDelta(x_{1})=\alpha1_{\{x_{1}=1\}}\), this inequality reduces to

$$\begin{aligned} f_{\alpha}(x_{1},x_{2}) &:= -\alpha1_{\{x_{1}=1\}}(x_{1})(x_{2}-x_{1}) \\ &\phantom{:}\le a+\sum_{i=1}^{n}b_{i}(x_{1}-K_{i}^{1})^{+}+\sum_{j=1}^{m}c_{j}(x_{2}-K_{j}^{2})^{+} \end{aligned}$$
(A.1)

for all \((x_{1},x_{2})\in \mathbb {R}^{2}_{+}\). Let \(f^{*}_{\alpha}\) denote the upper semicontinuous envelope of \(f_{\alpha}\). We observe that (A.1) holds for \(f_{\alpha}\) if and only if it also holds for \(f^{*}_{\alpha}\). It follows that

$$ \begin{aligned} D_{\emptyset}(0)&=\inf_{0\le\alpha\le1}D_{\emptyset}(f_{\alpha})=\inf_{0\le \alpha\le1}D_{\emptyset}(f^{*}_{\alpha})=\inf_{0\le\alpha\le1} P_{\emptyset}(f^{*}_{\alpha})\\ & = \inf_{0\le\alpha\le1}\alpha \mathbb {E}^{\mathbb {Q}}\big[1_{\{S_{1}=1\} }(S_{1})(S_{2}-S_{1})^{-}\big]=0, \end{aligned} $$

where the third equality follows from Proposition 3.10, and the fourth is due to \(f^{*}_{\alpha}= \alpha1_{\{x_{1}=1\}}(x_{1})(x_{2}-x_{1})^{-}\). On the other hand, since

$$A^{\mathbb {Q}}_{2}=\sup_{\alpha\in[0,1]}\alpha \mathbb {Q}[S_{1}=1]=\frac{1}{2}, $$

we have \(P_{\emptyset}(0)=-\mathbb {E}^{\mathbb {Q}}[A^{\mathbb {Q}}_{2}]=-\frac{1}{2}\), which indicates a duality gap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahim, A., Huang, YJ. Model-independent superhedging under portfolio constraints. Finance Stoch 20, 51–81 (2016). https://doi.org/10.1007/s00780-015-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0284-9

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation