Skip to main content
Log in

Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the active site. These are delivered by the concerted action of four accessory proteins, named UreD, UreF, UreG and UreE. This process requires protein flexibility at different levels and some disorder-to-order transition events that coordinate the mechanism of protein–protein interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for urease activation, presents a significant degree of intrinsic disorder, existing as a conformational ensemble featuring characteristics that recall a molten globule. Here, the folding properties of UreG were explored in Archaea hyperthermophiles, known to generally feature significantly low level of structural disorder in their proteome. UreG proteins from Methanocaldococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic assays. Metal-binding properties were studied using isothermal titration calorimetry. The results indicate that, as the mesophilic counterparts, both proteins contain a significant amount of secondary structure but maintain a flexible fold and a low GTPase activity. As opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), with affinities two orders of magnitude higher for Zn(II) than for Ni(II). No major modifications of the average conformational ensemble are observed, but binding of Zn(II) yields a more compact dimeric form in MsUreG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ITC:

Isothermal titration calorimetry

SEC:

Size-exclusion chromatography

MALS:

Multi-angle light scattering

QELS:

Quasi-elastic light scattering

RI:

Refraction index

CD:

Circular dichroism

TCEP:

Tris(2-carboxyethyl)phosphine

References

  1. Tompa P (2011) Curr Opin Struct Biol 21:419–425

    Article  CAS  PubMed  Google Scholar 

  2. Oldfield CJ, Dunker AK (2014) Annu Rev Biochem 83:553–584

    Article  CAS  PubMed  Google Scholar 

  3. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Chem Rev 114:6561–6588

    Article  CAS  PubMed  Google Scholar 

  4. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Chem Rev 114:6589–6631

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  6. Tompa P (2012) Trends Biochem Sci 37:509–516

    Article  CAS  PubMed  Google Scholar 

  7. Dyson HJ, Wright PE (2005) Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  8. Wright PE, Dyson HJ (2009) Curr Opin Struct Biol 19:31–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jakob U, Kriwacki R, Uversky VN (2014) Chem Rev 114:6779–6805

    Article  CAS  PubMed  Google Scholar 

  10. Fuxreiter M, Tompa P (2012) Adv Exp Med Biol 725:1–14

    Article  CAS  PubMed  Google Scholar 

  11. Fuxreiter M, Toth-Petroczy A, Kraut DA, Matouschek AT, Lim RY, Xue B, Kurgan L, Uversky VN (2014) Chem Rev 114:6806–6843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B (2011) Curr Opin Struct Biol 21:412–418

    Article  CAS  PubMed  Google Scholar 

  13. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Cell Mol Life Sci 72:137–151

    Article  CAS  PubMed  Google Scholar 

  14. Schad E, Tompa P, Hegyi H (2011) Genome Biol 12:R120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Xue B, Dunker AK, Uversky VN (2012) J Biomol Struct Dyn 30:137–149

    Article  CAS  PubMed  Google Scholar 

  16. Burra PV, Kalmar L, Tompa P (2010) PLoS One 5:e12069

    Article  PubMed Central  PubMed  Google Scholar 

  17. Breydo L, Uversky VN (2011) Metallomics 3:1163–1180

    Article  CAS  PubMed  Google Scholar 

  18. Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530

    Article  CAS  PubMed  Google Scholar 

  19. Maroney MJ, Ciurli S (2014) Chem Rev 114:4206–4228

    Article  CAS  PubMed  Google Scholar 

  20. Callahan BP, Yuan Y, Wolfenden R (2005) J Am Chem Soc 127:10828–10829

    Article  CAS  PubMed  Google Scholar 

  21. Farrugia MA, Macomber L, Hausinger RP (2013) J Biol Chem 288:13178–13185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lam R, Romanov V, Johns K, Battaile KP, Wu-Brown J, Guthrie JL, Hausinger RP, Pai EF, Chirgadze NY (2010) Proteins 78:2839–2848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fong YH, Wong HC, Chuck CP, Chen YW, Sun H, Wong KB (2011) J Biol Chem 286:43241–43249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zambelli B, Berardi A, Martin-Diaconescu V, Mazzei L, Musiani F, Maroney MJ, Ciurli S (2014) J Biol Inorg Chem 19:319–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA, Ciurli S (2005) J Biol Chem 280:4684–4695

    Article  CAS  PubMed  Google Scholar 

  26. Neyroz P, Zambelli B, Ciurli S (2006) Biochemistry 45:8918–8930

    Article  CAS  PubMed  Google Scholar 

  27. Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S (2012) Mol Bio Sys 8:220–228

    CAS  Google Scholar 

  28. Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB (2013) PLoS Biol 11:e1001678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ciurli S, Safarov N, Miletti S, Dikiy A, Christensen SK, Kornetzky K, Bryant DA, Vandenberghe I, Devreese B, Samyn B, Remaut H, van Beeumen J (2002) J Biol Inorg Chem 7:623–631

    Article  CAS  PubMed  Google Scholar 

  30. Musiani F, Zambelli B, Stola M, Ciurli S (2004) J Inorg Biochem 98:803–813

    Article  CAS  PubMed  Google Scholar 

  31. Remaut H, Safarov N, Ciurli S, Van Beeumen J (2001) J Biol Chem 276:49365–49370

    Article  CAS  PubMed  Google Scholar 

  32. Stola M, Musiani F, Mangani S, Turano P, Safarov N, Zambelli B, Ciurli S (2006) Biochemistry 45:6495–6509

    Article  CAS  PubMed  Google Scholar 

  33. Banaszak K, Martin-Diaconescu V, Bellucci M, Zambelli B, Rypniewski W, Maroney MJ, Ciurli S (2012) Biochem J 441:1017–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zambelli B, Banaszak K, Merloni A, Kiliszek A, Rypniewski W, Ciurli S (2013) J Biol Inorg Chem 18:1005–1017

    Article  CAS  PubMed  Google Scholar 

  35. Bellucci M, Zambelli B, Musiani F, Turano P, Ciurli S (2009) Biochem J 422:91–100

    Article  CAS  PubMed  Google Scholar 

  36. Merloni A, Dobrovolska O, Zambelli B, Agostini F, Bazzani M, Musiani F, Ciurli S (2014) Biochim Biophys Acta 1844:1662–1674

    Article  CAS  PubMed  Google Scholar 

  37. Biagi F, Musiani F, Ciurli S (2013) J Biol Inorg Chem 18:571–577

    Article  CAS  PubMed  Google Scholar 

  38. Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007) Biochemistry 46:3171–31782

    Article  CAS  PubMed  Google Scholar 

  39. Zambelli B, Turano P, Musiani F, Neyroz P, Ciurli S (2009) Proteins 74:222–239

    Article  CAS  PubMed  Google Scholar 

  40. Real-Guerra R, Staniscuaski F, Zambelli B, Musiani F, Ciurli S, Carlini CR (2012) Plant Mol Biol 78:461–475

    Article  CAS  PubMed  Google Scholar 

  41. D’Urzo A, Santambrogio C, Grandori R, Ciurli S, Zambelli B (2014) J Biol Inorg Chem 19:1341–1354

    Article  PubMed  Google Scholar 

  42. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Science 273:1058–1073

    Article  CAS  PubMed  Google Scholar 

  43. Gasper R, Scrima A, Wittinghofer A (2006) J Biol Chem 281:27492–27502

    Article  CAS  PubMed  Google Scholar 

  44. Maezato Y, Johnson T, McCarthy S, Dana K, Blum P (2012) J Bacteriol 194:6856–6863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) Appl Environ Microbiol 74:682–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Clark TR, Baldi F, Olson GJ (1993) Appl Environ Microbiol 59:2375–2379

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Schmidt TG, Skerra A (2007) Nat Protoc 2:1528–1535

    Article  CAS  PubMed  Google Scholar 

  48. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  49. Studier FW (2005) Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  50. Griep S, Hobohm U (2010) Nucleic Acids Res 38:D318–D319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) Nucleic Acids Res 39:D392–D401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) Nucleic Acids Res 35:D786–D793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) BMC Bioinformatics 8:211

    Article  PubMed Central  PubMed  Google Scholar 

  54. Uversky VN, Gillespie JR, Fink AL (2000) Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  55. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  56. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) BMC Bioinformatics 7:208

    Article  PubMed Central  PubMed  Google Scholar 

  57. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) J Bioinform Comput Biol 3:35–60

    Article  CAS  PubMed  Google Scholar 

  58. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) Biochim Biophys Acta 1804:996–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Lobley A, Whitmore L, Wallace BA (2002) Bioinformatics 18:211–212

    Article  CAS  PubMed  Google Scholar 

  60. Greenfield NJ (2006) Nat Protoc 1:2527–2535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hwang TL, Shaka AJ (1995) J Magn Reson 112:275–279

    Article  CAS  Google Scholar 

  62. Mehta N, Benoit S, Maier RJ (2003) Microb Pathog 35:229–234

    Article  CAS  PubMed  Google Scholar 

  63. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Biophys J 92:1439–1456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Musiani F, Ippoliti E, Micheletti C, Carloni P, Ciurli S (2013) Biochemistry 52:2949–2954

    Article  CAS  PubMed  Google Scholar 

  65. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  66. Semavina M, Beckett D, Logan TM (2006) Biochemistry 45:12480–12490

    Article  CAS  PubMed  Google Scholar 

  67. Finney LA, O’Halloran TV (2003) Science 300:931–936

    Article  CAS  PubMed  Google Scholar 

  68. Boer JL, Quiroz-Valenzuela S, Anderson KL, Hausinger RP (2010) Biochemistry 49:5859–5869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Soriano A, Hausinger RP (1999) Proc Natl Acad Sci USA 96:11140–11144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Moncrief MB, Hausinger RP (1997) J Bacteriol 179:4081–4086

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Fu C, Olson JW, Maier RJ (1995) Proc Natl Acad Sci USA 92:2333–2337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Maier T, Jacobi A, Sauter M, Bock A (1993) J Bacteriol 175:630–635

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Sydor AM, Liu J, Zamble DB (2011) J Bacteriol 193:1359–1368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Hagihara Y, Oobatake M, Goto Y (1994) Protein Sci 3:1418–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ptitsyn OB, Uversky VN (1994) FEBS Lett 341:15–18

    Article  CAS  PubMed  Google Scholar 

  76. Kuhns LG, Mahawar M, Sharp JS, Benoit S, Maier RJ (2013) Biochem J 450:141–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by the University of Bologna and CIRMMP (Consorzio Interuniversitario di Risonanze Magnetiche di Metallo-Proteine). CERM (Center for Magnetic Resonance, University of Florence) is acknowledged for granting access to the NMR facility. Massimo Lucci and Fabio Calogiuri from CERM are acknowledged for data collection and useful discussions. We acknowledge Prof. Vladimir N. Uversky (USF, Tampa) for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zambelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraula, M., Ciurli, S. & Zambelli, B. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. J Biol Inorg Chem 20, 739–755 (2015). https://doi.org/10.1007/s00775-015-1261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1261-7

Keywords

Navigation