Skip to main content
Log in

Structure of the UreD–UreF–UreG–UreE complex in Helicobacter pylori: a model study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The molecular details of the protein complex formed by UreD, UreF, UreG, and UreE, accessory proteins for urease activation in the carcinogenic bacterium Helicobacter pylori, have been elucidated using computational modeling. The calculated structure of the complex supports the hypothesis of UreF acting as a GTPase activation protein that facilitates GTP hydrolysis by UreG during urease maturation, and provides a rationale for the design of new drugs against infections by ureolytic bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eaton KA, Brooks CL, Morgan DR, Krakowka S (1991) Infect Immun 59:2470

    PubMed  CAS  Google Scholar 

  2. Lin W, Mathys V, Ang ELY, Koh VHQ, Martínez Gómez JM, Ang MLT, Zainul Rahim SZ, Tan MP, Pethe K, Alonso S (2012) Infect Immun 80:2771–2779

    Article  PubMed  CAS  Google Scholar 

  3. Jones BD, Lockatell CV, Johnson DE, Warren JW, Mobley HLT (1990) Infect Immun 58:1120–1123

    PubMed  CAS  Google Scholar 

  4. Young GM, Amid D, Miller VL (1996) J Bacteriol 178:6487–6495

    PubMed  CAS  Google Scholar 

  5. Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR (2000) Infect Immun 68:443

    Article  PubMed  CAS  Google Scholar 

  6. Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530

    Article  PubMed  CAS  Google Scholar 

  7. Burne RA, Chen Y-YM (2000) Microbes Infect 2:533–542

    Article  PubMed  CAS  Google Scholar 

  8. Mobley HLT, Island MD, Hausinger RP (1995) Microbiol Rev 59:451–480

    PubMed  CAS  Google Scholar 

  9. Balasubramanian A, Ponnuraj K (2010) J Mol Biol 400:274–283

    Article  PubMed  CAS  Google Scholar 

  10. Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) Structure 7:205–216

    Article  PubMed  CAS  Google Scholar 

  11. Ha N-C, Oh S-T, Sung JY, Cha KA, Lee MH, Oh B-H (2001) Nat Struct Biol 8:505–509

    Article  PubMed  CAS  Google Scholar 

  12. Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) Science 268:998–1004

    Article  PubMed  CAS  Google Scholar 

  13. Musiani F, Arnofi E, Casadio R, Ciurli S (2001) J Biol Inorg Chem 6:300–314

    Article  PubMed  CAS  Google Scholar 

  14. Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Coord Chem Rev 190–192:331–355

    Article  Google Scholar 

  15. Ciurli S (2007) Nickel and its surprising impact in nature. Wiley, Chichester, pp 241–278

    Book  Google Scholar 

  16. Ciurli S (2007) In: Bertini I, Gray HB, Valentine JS (eds) Biological inorganic chemistry: structure and reactivity. University Science Books, California, pp 198–208

    Google Scholar 

  17. Ciurli S (2007) In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences. Wiley, Chichester

    Google Scholar 

  18. Steyert SR, Rasko DA, Kaper JB (2011) J Bacteriol 193:875–886

    Article  PubMed  CAS  Google Scholar 

  19. Chang Z, Kuchar J, Hausinger RP (2004) J Biol Chem 279:15305–15313

    Article  PubMed  CAS  Google Scholar 

  20. Soriano A, Hausinger RP (1999) Proc Natl Acad Sci USA 96:11140–11144

    Article  PubMed  CAS  Google Scholar 

  21. Zambelli B, Stola M, Musiani F, De Vriendt K, Samyn B, Devreese B, Van Beeumen J, Turano P, Dikiy A, Bryant DA, Ciurli S (2005) J Biol Chem 280:4684–4695

    Article  PubMed  CAS  Google Scholar 

  22. Musiani F, Ippoliti E, Micheletti C, Carloni P, Ciurli S (2013) Biochemistry 52:2949–2954

    Article  PubMed  CAS  Google Scholar 

  23. Salomone-Stagni M, Zambelli B, Musiani F, Ciurli S (2007) Proteins 68:749–761

    Article  PubMed  CAS  Google Scholar 

  24. Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP (2009) Metallomics 1:207–221

    Article  PubMed  CAS  Google Scholar 

  25. Soriano A, Colpas GJ, Hausinger RP (2000) Biochemistry 39:12435–12440

    Article  PubMed  CAS  Google Scholar 

  26. Remaut H, Safarov N, Ciurli S, Van Beeumen J (2001) J Biol Chem 276:49365–49370

    Article  PubMed  CAS  Google Scholar 

  27. Song HK, Mulrooney SB, Huber R, Hausinger RP (2001) J Biol Chem 276:49359–49364

    Article  PubMed  CAS  Google Scholar 

  28. Banaszak K, Martin-Diaconescu V, Bellucci M, Zambelli B, Rypniewski W, Maroney MJ, Ciurli S (2012) Biochem J 441:1017–1026

    Article  PubMed  CAS  Google Scholar 

  29. Shi R, Munger C, Asinas A, Benoit SL, Miller E, Matte A, Maier RJ, Cygler M (2010) Biochemistry 49:7080–7088

    Article  PubMed  CAS  Google Scholar 

  30. Lam R, Romanov V, Johns K, Battaile KP, Wu-Brown J, Guthrie JL, Hausinger RP, Pai EF, Chirgadze NY (2010) Proteins 78:2839–2848

    Article  PubMed  CAS  Google Scholar 

  31. Fong YH, Wong HC, Chuck CP, Chen YW, Sun H, Wong KB (2011) J Biol Chem 286:43241–43249

    Article  PubMed  CAS  Google Scholar 

  32. Neyroz P, Zambelli B, Ciurli S (2006) Biochemistry 45:8918–8930

    Article  PubMed  CAS  Google Scholar 

  33. Zambelli B, Cremades N, Neyroz P, Turano P, Uversky VN, Ciurli S (2012) Mol Biosyst 8:220–228

    Article  PubMed  CAS  Google Scholar 

  34. Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007) Biochemistry 46:3171–3182

    Article  PubMed  CAS  Google Scholar 

  35. Zambelli B, Turano P, Musiani F, Neyroz P, Ciurli S (2009) Proteins 74:222–239

    Article  PubMed  CAS  Google Scholar 

  36. Gasper R, Scrima A, Wittinghofer A (2006) J Biol Chem 281:27492–27502

    Article  PubMed  CAS  Google Scholar 

  37. Voland P, Weeks DL, Marcus EA, Prinz C, Sachs G, Scott D (2003) Am J Physiol Gastrointest Liver Physiol 284:G96–G106

    PubMed  CAS  Google Scholar 

  38. Stingl K, Schauer K, Ecobichon C, Labigne A, Lenormand P, Rousselle JC, Namane A, de Reuse H (2008) Mol Cell Proteomics 7:2429–2441

    Article  PubMed  CAS  Google Scholar 

  39. Bellucci M, Zambelli B, Musiani F, Turano P, Ciurli S (2009) Biochem J 422:91–100

    Article  PubMed  CAS  Google Scholar 

  40. Boer JL, Quiroz-Valenzuela S, Anderson KL, Hausinger RP (2010) Biochemistry 49:5859–5869

    Article  PubMed  CAS  Google Scholar 

  41. Ligabue-Braun R, Real-Guerra R, Carlini CR, Verli H (2012) J Biomol Struct Dyn. doi:10.1080/07391102.2012.713782

  42. Musiani F, Zambelli B, Stola M, Ciurli S (2004) J Inorg Biochem 98:803–813

    Article  PubMed  CAS  Google Scholar 

  43. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) J Mol Biol 331:281–299

    Article  PubMed  CAS  Google Scholar 

  44. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  45. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) Nucleic Acids Res 38:W529–W533

    Article  PubMed  CAS  Google Scholar 

  46. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) Bioinformatics 19:163–164

    Article  PubMed  CAS  Google Scholar 

  47. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Nucleic Acids Res 33:W299–W302

    Article  PubMed  CAS  Google Scholar 

  48. Konc J, Janezic D (2010) Bioinformatics 26:1160–1168

    Article  PubMed  CAS  Google Scholar 

  49. Konc J, Janezic D (2010) Nucleic Acids Res 38:W436–W440

    Article  PubMed  CAS  Google Scholar 

  50. Konc J, Janezic D (2012) Nucleic Acids Res 40:W214–W221

    Article  PubMed  CAS  Google Scholar 

  51. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  52. Boer JL, Hausinger RP (2012) Biochemistry 51:2298–2308

    Article  PubMed  CAS  Google Scholar 

  53. Dominguez C, Boelens R, Bonvin AM (2003) J Am Chem Soc 125:1731–1737

    Article  PubMed  CAS  Google Scholar 

  54. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM (2007) Proteins 69:726–733

    Article  PubMed  Google Scholar 

  55. Honig B, Nicholls A (1995) Science 268:1144–1149

    Article  PubMed  CAS  Google Scholar 

  56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  57. Janin J, Miller S, Chothia C (1988) J Mol Biol 204:155–164

    Article  PubMed  CAS  Google Scholar 

  58. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F, Wittinghofer A (1997) Science 277:333–338

    Article  PubMed  CAS  Google Scholar 

  59. Tompa P, Szasz C, Buday L (2005) Trends Biochem Sci 30:484–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by grants from the Italian MIUR and by the University of Bologna to S.C.; F.M. was supported by Programma Operativo del Fondo Sociale Europeo 2007/2013 of Regione Autonoma Friuli Venezia Giulia and by Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine (CIRMMP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Musiani or Stefano Ciurli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Results of the analysis conducted on the surface of HpUreF and UreG (PDF 1048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biagi, F., Musiani, F. & Ciurli, S. Structure of the UreD–UreF–UreG–UreE complex in Helicobacter pylori: a model study. J Biol Inorg Chem 18, 571–577 (2013). https://doi.org/10.1007/s00775-013-1002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1002-8

Keywords

Navigation