Skip to main content

Advertisement

Log in

Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Objective

The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects.

Methods

Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription–quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism.

Result

Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05).

Conclusion

Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen M, Yang D, Hu X, Jiang G, Li T, Ouyang Z et al (2021) Stachydrine hydrochloride inhibits osteoclastogenesis by regulating the NF-κB and p38 signaling pathways to alleviate postmenopausal osteoporosis. Biochem Biophys Res Commun 542:1–8. https://doi.org/10.1016/j.bbrc.2021.01.012

    Article  CAS  PubMed  Google Scholar 

  2. Liu XW, Ma B, Zi Y, Xiang LB, Han TY (2021) Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. European J Histochem 65:3195. https://doi.org/10.4081/ejh.2021.3195

  3. Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708. https://doi.org/10.1016/j.biomaterials.2012.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boda S, Wang H, John J, Reinhardt R, Xie J (2020) Dual delivery of alendronate and E7-BMP-2 peptide via calcium chelation to mineralized nanofiber fragments for alveolar bone regeneration. ACS Biomater Sci Eng 6:2368–2375. https://doi.org/10.1021/acsbiomaterials.0c00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y et al (2021) Simultaneous incorporation of PTH(1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact mater 6:1839–1851. https://doi.org/10.1016/j.bioactmat.2020.11.021

    Article  CAS  PubMed  Google Scholar 

  6. Cruz R, Pesce G, Calasans-Maia J, Moraschini V, Calasans-Maia M, Granjeiro J (2020) Calcium phosphate carrying simvastatin enhances bone regeneration: a systematic review. Braz Dent J 31:93–102. https://doi.org/10.1590/0103-6440202002971

    Article  PubMed  Google Scholar 

  7. Dai C, Li Y, Pan W, Wang G, Huang R, Bu Y et al (2020) Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration. ACS Biomater Sci Eng 6:575–586. https://doi.org/10.1021/acsbiomaterials.9b01381

    Article  CAS  PubMed  Google Scholar 

  8. Liang H, Liu X, Pi Y, Yu Q, Yin Y, Li X et al (2019) 3D-printed β-tricalcium phosphate scaffold combined with a pulse electromagnetic field promotes the repair of skull defects in rats. ACS Biomater Sci Eng 5:5359–5367. https://doi.org/10.1021/acsbiomaterials.9b00858

    Article  CAS  PubMed  Google Scholar 

  9. Omar A, Ibrahim A, Abd El-Aziz T, Al-Rashidy Z, Farag M (2020) Role of alkali metal oxide type on the degradation and in vivo biocompatibility of soda-lime-borate bioactive glass. J Biomed Mater Res Part B, Appl Biomat 109:1059–1073. https://doi.org/10.1002/jbm.b.34769

    Article  CAS  Google Scholar 

  10. Kao C, Chiu Y, Lee A, Lin Y, Huang T, Liu Y et al (2021) The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. Mater Sci Eng, C Mater Biol Appl 119:111629. https://doi.org/10.1016/j.msec.2020.111629

    Article  CAS  Google Scholar 

  11. Wang Y, Hao H, Zhang S (2016) Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. Mater Sci Eng, C Mater Biol Appl 61:545–552. https://doi.org/10.1016/j.msec.2015.12.060

    Article  CAS  Google Scholar 

  12. Wu C, Wang C, Yang A, Lu C, Lin C (2021) Selenium status is independently related to bone mineral density, FRAX score, and bone fracture history: NHANES, 2013 to 2014. Bone 143:115631. https://doi.org/10.1016/j.bone.2020.115631

    Article  CAS  PubMed  Google Scholar 

  13. Murphy E, Gluer CC, Reid DM, Felsenberg D, Roux C, Eastell R et al (2010) Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 95:3173–3181. https://doi.org/10.1210/jc.2009-2630

    Article  CAS  PubMed  Google Scholar 

  14. Hoeg A, Gogakos A, Murphy E, Mueller S, Kohrle J, Reid DM et al (2012) Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 97:4061–4070. https://doi.org/10.1210/jc.2012-2121

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Wang Q, Gu X, Kang Y, Zhang Y, Hu Y et al (2019) Porous Se@SiO nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model. Int J Nanomed 14:3845–3860. https://doi.org/10.2147/ijn.S202741

    Article  CAS  Google Scholar 

  16. Wang Y, Lv P, Ma Z, Zhang J (2013) Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites. Biol Trace Elem Res 15572–81. https://doi.org/10.1007/s12011-013-9763-z

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Bian W, Liu S, Huang K (2012) Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol Trace Elem Res 150:441–450

    Article  Google Scholar 

  18. Mackinnon ES, Rao AV, Josse RG, Rao LG (2011) Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int 22:1091–1101

    Article  CAS  Google Scholar 

  19. Huang B, Tian Y, Zhang W, Ma Y, Yuan Y, Liu C (2017) Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA. Colloids Surf B: Biointerfaces 159:684–695

    Article  CAS  Google Scholar 

  20. Vaquette C, Bock N, Tran P (2020) Layered antimicrobial selenium nanoparticle-calcium phosphate coating on 3D printed scaffolds enhanced bone formation in critical size defects. ACS Appl Mater Interfaces 12:55638–55648. https://doi.org/10.1021/acsami.0c17017

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Z, Sun T, Qin Y, Zhu Y, Jiang Y, Zhang Y et al (2019) Selenium-doped hydroxyapatite biopapers with an anti-bone tumor effect by inducing apoptosis. Biomater Sci 7:5044–5053. https://doi.org/10.1039/c9bm00953a

    Article  CAS  PubMed  Google Scholar 

  22. Zhang R, Yang M, Li Y, Liu H, Ren M, Tao ZS (2021) Effect of alendronate on the femoral metaphyseal defect under carbamazepine in ovariectomized rats. J Orthop Surg Res 16:14. https://doi.org/10.1186/s13018-020-02151-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tao ZS, Zhou WS, Xu HG, Yang M (2020) Aspirin modified strontium-doped beta-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother 132:110911. https://doi.org/10.1016/j.biopha.2020.110911

    Article  CAS  PubMed  Google Scholar 

  24. Tao ZS, Wu XJ, Zhou WS, Wu XJ, Liao W, Yang M et al (2019) Local administration of aspirin with beta-tricalcium phosphate/poly-lactic-co-glycolic acid (beta-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab 37:1026–1035. https://doi.org/10.1007/s00774-019-01008-w

    Article  CAS  PubMed  Google Scholar 

  25. Zou D, Zhang Z, He J, Zhang K, Ye D, Han W et al (2012) Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials 33:2097–2108

    Article  CAS  Google Scholar 

  26. Hao Y, Yingjie H, Zhang G, Ge Z, Wang Y, Yisheng W et al (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41:631–638. https://doi.org/10.1016/j.bone.2007.06.006

    Article  PubMed  Google Scholar 

  27. Tao ZS, Zhou WS, Wu XJ, Wang L, Yang M, Xie JB et al (2019) Single-dose local administration of parathyroid hormone (1–34, PTH) with beta-tricalcium phosphate/collagen (beta-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37:28–35. https://doi.org/10.1007/s00774-018-0906-3

    Article  CAS  PubMed  Google Scholar 

  28. Galvez-Fernandez M, Grau-Perez M, Garcia-Barrera T, Ramirez-Acosta S, Gomez-Ariza J, Perez-Gomez B et al (2020) Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: the HORTEGA study. Free Radical Biol Med. https://doi.org/10.1016/j.freeradbiomed.2020.10.318

    Article  Google Scholar 

  29. Kim J, Jang H, Kim J, Cha I (2021) Effects of pre-extraction intermittent PTH administration on extraction socket healing in bisphosphonate administered ovariectomized rats. Sci Rep 11:54. https://doi.org/10.1038/s41598-020-79787-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu J, Sun J, Xu J, Zhou Z, Zhang Y (2021) Downregulated microRNA-199a-3p enhances osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Kdm3a in ovariectomized rats. Biochem J. https://doi.org/10.1042/bcj20200314

    Article  PubMed  Google Scholar 

  31. Tao ZS, Bai BL, He XW, Liu W, Li H, Zhou Q et al (2016) A comparative study of strontium-substituted hydroxyapatite coating on implant’s osseointegration for osteopenic rats. Med Biol Eng Comput 54:1959–1968. https://doi.org/10.1007/s11517-016-1494-9

    Article  PubMed  Google Scholar 

  32. Tao ZS, Zhou WS, Qiang Z, Tu KK, Huang ZL, Xu HM et al (2016) Intermittent administration of human parathyroid hormone (1–34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 30:952–960. https://doi.org/10.1177/0885328215610898

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Zhang G, Pan X, Liu Z, Zheng L, Chan C et al (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48:1388–1400. https://doi.org/10.1016/j.bone.2011.03.720

    Article  PubMed  Google Scholar 

  34. Gorrini C, Baniasadi P, Harris I, Silvester J, Inoue S, Snow B et al (2013) BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med 210:1529–1544. https://doi.org/10.1084/jem.20121337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khosla S, Oursler M, Monroe D (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581. https://doi.org/10.1016/j.tem.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stolwijk J, Garje R, Sieren J, Buettner G, Zakharia Y (2020) Understanding the redox biology of selenium in the search of targeted cancer therapies. Antioxidants (Basel, Switzerland) 9:450. https://doi.org/10.3390/antiox9050420

    Article  CAS  Google Scholar 

  37. Zeng H, Cao J, Combs G (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5:97–110. https://doi.org/10.3390/nu5010097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pastacı Özsobacı N, Düzgün Ergün D, Durmuş S, Tunçdemir M, Uzun H, Gelişgen R et al (2018) Selenium supplementation ameliorates electromagnetic field-induced oxidative stress in the HEK293 cells. J Trace Elem Med Biol: Org Soc Miner Trace Elem (GMS) 50:572–579. https://doi.org/10.1016/j.jtemb.2018.04.008

    Article  CAS  Google Scholar 

  39. Chen W, Chen X, Chen A, Shi Q, Pan G, Pei M et al (2020) Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radical Biol Med 146:92–106. https://doi.org/10.1016/j.freeradbiomed.2019.10.412

    Article  CAS  Google Scholar 

  40. Dimitriou R, Jones E, McGonagle D, Giannoudis P (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  41. Amin N, Boccardi V, Taghizadeh M, Jafarnejad S (2020) Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 32:363–371. https://doi.org/10.1007/s40520-019-01223-5

    Article  PubMed  Google Scholar 

  42. Cai Z, Wu B, Ye G, Liu W, Chen K, Wang P et al (2020) Enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells in ossification of the posterior longitudinal ligament through activation of the BMP2-smad1/5/8 pathway. Stem Cells Dev 29:1567–1576. https://doi.org/10.1089/scd.2020.0117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from National Natural Science Foundation of China (82002322), Funding of “Peak” Training Program and “Panfeng” Innovation Team Project for Scientific Research of Yijishan Hospital, Wannan Medical College (grant no. GF2019G04, PF2019005, GF2019T02 and PF2019007) and Young and Middle-aged Key Project of Wannan Medical College (WK2020ZF16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Shan Tao.

Ethics declarations

Ethical approval

All experiments were approved by the Ethics Committee Approval of the First Affiliated Hospital of All experiments were approved by the Ethics Committee Approval of the First Affiliated Hospital of guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TL., Tao, ZS., Wu, Xj. et al. Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 39, 934–943 (2021). https://doi.org/10.1007/s00774-021-01240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-021-01240-3

Keywords

Navigation