Skip to main content

Advertisement

Log in

Enhanced Healing of Rat Calvarial Critical Size Defect with Selenium-Doped Lamellar Biocomposites

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150∼200 nm in length and 20∼30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p < 0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khadka A, Li J, Li Y, Gao Y, Zuo Y, Ma Y (2011) Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect. J Craniofac Surg 22(5):1852–1858

    Article  PubMed  Google Scholar 

  2. Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291

    Article  PubMed  Google Scholar 

  3. Di Bella C, Farlie P, Penington AJ (2008) Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 14(4):483–490

    Article  PubMed  Google Scholar 

  4. Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 16(6):1961–1970

    Article  PubMed  CAS  Google Scholar 

  5. Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T (2007) Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 80(1):85–93

    PubMed  Google Scholar 

  6. Zhao X, Ong KJ, Ede JD, Stafford JL, Ng KW, Goss GG, Loo SC (2013) Evaluating the toxicity of hydroxyapatite nanoparticles in catfish cells and zebrafish embryos. Small 9(9–10):1734–1741

    Article  PubMed  CAS  Google Scholar 

  7. Bagher Z, Rajaei F, Shokrgozar M (2012) Comparative study of bone repair using porous hydroxyapatite/beta-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect. Iran Biomed J 16(1):18–24

    PubMed  CAS  Google Scholar 

  8. Yano K, Namikawa T, Uemura T, Hoshino M, Wakitani S, Takaoka K, Nakamura H (2012) Regenerative repair of bone defects with osteoinductive hydroxyapatite fabricated to match the defect and implanted with combined use of computer-aided design, computer-aided manufacturing, and computer-assisted surgery systems: a feasibility study in a canine model. J Orthop Sci 17(4):484–489

    Article  PubMed  CAS  Google Scholar 

  9. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32(7):1826–1837

    Article  PubMed  CAS  Google Scholar 

  10. Hu J, Li YF, Li Q, Zhu SS, Luo E, Li JH, Feng G, Liao YM (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31(34):9006–9014

    Article  PubMed  Google Scholar 

  11. Evis Z, Webster TJ (2011) Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram 110(5):311–320

    Article  CAS  Google Scholar 

  12. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24(25):4609–4620

    Article  PubMed  CAS  Google Scholar 

  13. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13(12):1199–1206

    Article  PubMed  CAS  Google Scholar 

  14. Dallari D, Savarino L, Albisinni U, Fornasari P, Ferruzzi A, Baldini N, Giannini S (2012) A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33(1):72–79

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31(34):9006–9014

    Article  PubMed  CAS  Google Scholar 

  16. Ferguson LR, Karunasinghe N, Zhu S, Wang AH (2012) Selenium and its’ role in the maintenance of genomic stability. Mutat Res 733(1–2):100–110

    PubMed  CAS  Google Scholar 

  17. Zeng H, Cao JJ, Combs GF Jr (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5(1):97–110

    Article  PubMed  CAS  Google Scholar 

  18. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  PubMed  CAS  Google Scholar 

  19. Hoeg A, Gogakos A, Murphy E, Mueller S, Kohrle J, Reid DM, Gluer CC, Felsenberg D, Roux C, Eastell R, Schomburg L, Williams GR (2012) Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 97(11):4061–4070

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163(1):9–17

    Article  PubMed  Google Scholar 

  21. Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26(7):944–984

    Article  PubMed  CAS  Google Scholar 

  22. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235

    Article  PubMed  CAS  Google Scholar 

  23. Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163–2174

    Article  PubMed  CAS  Google Scholar 

  24. Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, Le Coustumer P, Predoi D. (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. BioMed Res Int 2013 (2013), Article ID 916218, 10 pages

  25. Li Z, Yubao L, Yi Z, Lan W, Jansen JA (2010) In vitro and in vivo evaluation on the bioactivity of ZnO containing nano-hydroxyapatite/chitosan cement. J Biomed Mater Res A 93(1):269–279

    PubMed  Google Scholar 

  26. Niu X, Fan Y, Liu X, Li X, Li P, Wang J, Sha Z, Feng Q (2011) Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(l-lactide)-based microsphere-scaffold delivery system. Artif Organs 35(7):E119–E128

    Article  PubMed  Google Scholar 

  27. Wang YH, Ma J, Zhou L, Chen J, Liu YH, Qiu ZY, Zhang SM (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2(3):378–386

    Article  PubMed  Google Scholar 

  28. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533

    Article  CAS  Google Scholar 

  30. Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly(l-lactic acid) and poly(l-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446

    Article  PubMed  CAS  Google Scholar 

  31. Cai Q, Shi G, Bei J, Wang S (2003) Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin. Biomaterials 24(4):629–638

    Article  PubMed  Google Scholar 

  32. Ben-David D, Srouji S, Shapira-Schweitzer K, Kossover O, Ivanir E, Kuhn G, Muller R, Seliktar D, Livne E (2013) Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials 34(12):2902–2910

    Article  PubMed  CAS  Google Scholar 

  33. Ma J, Wang YH, Zhou L, Zhang SM (2013) Preparation and characterization of selenite substituted hydroxyapatite. Mat Sci Eng C 33(1):440–445

    Article  CAS  Google Scholar 

  34. Ma X, Wang Y, Guo H, Wang JT (2011) Nano-hydroxyapatite/chitosan sponge-like biocomposite for repairing of rat calvarial critical-sized bone defect. J Bioact Compat Polym 26(4):335–346

    Article  CAS  Google Scholar 

  35. Bouvier M, Chawla AS, Hinberg I (1991) In vitro degradation of a poly(ether urethane) by trypsin. J Biomed Mater Res 25(6):773–789

    Article  PubMed  CAS  Google Scholar 

  36. Moody HR, Brown CP, Bowden JC, Crawford RW, McElwain DL, Oloyede AO (2006) In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? J Anat 209(2):259–267

    Article  PubMed  CAS  Google Scholar 

  37. Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424

    Article  PubMed  CAS  Google Scholar 

  38. Mukherjee DP, Tunkle AS, Roberts RA, Clavenna A, Rogers S, Smith D (2003) An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. J Biomed Mater Res B Appl Biomater 67(1):603–609

    Article  PubMed  CAS  Google Scholar 

  39. Baran ET, Tuzlakoglu K, Salgado AJ, Reis RL (2004) Multichannel mould processing of 3D structures from microporous coralline hydroxyapatite granules and chitosan support materials for guided tissue regeneration/engineering. J Mater Sci Mater Med 15(2):161–165

    Article  PubMed  CAS  Google Scholar 

  40. Yazar M, Sarban S, Kocyigit A, Isikan UE (2005) Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res 106(2):123–132

    Article  PubMed  CAS  Google Scholar 

  41. Canter PH, Wider B, Ernst E (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology 46(8):1223–1233

    Article  PubMed  CAS  Google Scholar 

  42. Zwolak I, Zaporowska H (2012) Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol 28(1):31–46

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez-Valencia C, Lopez-Alvarez M, Cochon-Cores B, Pereiro I, Serra J, Gonzalez P (2013) Novel selenium-doped hydroxyapatite coatings for biomedical applications. J Biomed Mater Res A 101(3):853–861

    PubMed  CAS  Google Scholar 

  44. Shekkeris AS, Jaiswal PK, Khan WS (2012) Clinical applications of mesenchymal stem cells in the treatment of fracture non-union and bone defects. Curr Stem Cell Res Ther 7(2):127–133

    Article  PubMed  CAS  Google Scholar 

  45. Bauer TW, Togawa D (2003) Bone graft substitutes: towards a more perfect union. Orthopedics 26(9):925–926

    PubMed  Google Scholar 

  46. Kaipel M, Schutzenberger S, Schultz A, Ferguson J, Slezak P, Morton TJ, Van Griensven M, Redl H (2012) BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J Orthop Res 30(10):1563–1569

    Article  PubMed  CAS  Google Scholar 

  47. Silva RV, Camilli JA, Bertran CA, Moreira NH (2005) The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 34(2):178–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sincerely, we will thank Dr. Yu Teng from Union Hospital of the Huazhong University of Science and Technology for the construction of the bone defect model. This work was supported by the National Natural Science Foundation of China (grant nos. 81071263 and 30870624), National High-Technology Research and Development Program of China (grant nos. 2011AA030105 and 2012CB933601), and International Science and Technology Cooperation Program of China (grant no. 0102011DFA31430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lv.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lv, P., Ma, Z. et al. Enhanced Healing of Rat Calvarial Critical Size Defect with Selenium-Doped Lamellar Biocomposites. Biol Trace Elem Res 155, 72–81 (2013). https://doi.org/10.1007/s12011-013-9763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9763-z

Keywords

Navigation