Skip to main content

Advertisement

Log in

Effectiveness of elcatonin for alleviating pain and inhibiting bone resorption in patients with osteoporotic vertebral fractures

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Elderly patients with osteoporotic vertebral fractures often experience severe pain that reduces their quality of life (QOL). Calcitonin, a bone resorption inhibitor, has been reported to alleviate pain in such patients; however, few clinical studies have demonstrated this effect. The objective of this study was to compare changes in pain scores, activities of daily living (ADL), QOL, bone resorption, bone mineral density (BMD), and fracture healing among patients with new vertebral fractures who received different treatment modalities. We conducted an open-label, multicenter, randomized, parallel control group study comprising 107 female patients ≥55 years old with acute back pain from vertebral fracture. All subjects received either intramuscular injections of elcatonin, a derivative of calcitonin, or an oral nonsteroidal antiinflammatory drug (NSAID) combined with an active vitamin D3 (VD3) analogue for 6 months. The pain was assessed using a visual analogue scale, and ADL and QOL were assessed using questionnaires. BMD was measured using dual-energy X-ray absorptiometry. A two-tailed significance level of 5% was used. The elcatonin IM group had significantly higher QOL score at 2 weeks and later, and significantly lower VAS and ADL scores than those in the NSAID + VD3 group at 1 month and later. The elcatonin IM group had significantly reduced TRACP-5b levels compared with those in the NSAID + VD3 group at 3 months and later and significantly higher percent changes in BMD than the NSAID + VD3 group. These results suggest that elcatonin significantly alleviated pain, inhibited bone resorption, and improved ADL, QOL, and BMD compared with NSAID + VD3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hagino H, Nakamura T, Fujiwara S, Oeki M, Okano T, Teshima R (2009) Sequential change in the quality of life for patients with incident clinical fracture: a prospective study. Osteoporos Int 20:695–702

    Article  CAS  PubMed  Google Scholar 

  2. Masunari N, Fujiwara S, Nakata Y, Nakashima E, Nakamura T (2007) Historical height loss, vertebral deformity, and health-related quality of life in Hiroshima cohort study. Osteoporos Int 18:1493–1499

    Article  CAS  PubMed  Google Scholar 

  3. Summary of the 2013 National Livelihood Survey by Ministry of Health, Labour and Welfare. http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa13/ (2014). Accessed 30 July 2015 (in Japanese)

  4. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  CAS  PubMed  Google Scholar 

  5. Hagino H, Sawaguchi T, Endo N, Ito Y, Nakano T, Watanabe Y (2012) The risk of second hip fracture in patients after their first hip fracture. Calcif Tissue Int 90:14–21

    Article  CAS  PubMed  Google Scholar 

  6. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fracture. J Bone Miner Res 14:821–828

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto T, Hoshino M, Tsujio T, Terai H, Namikawa T, Matsumura A, Kato M, Toyoda H, Suzuki A, Takayama K, Takaoka K, Nakamura H (2012) Prognostic factors for reduction of daily living following osteoporotic vertebral fractures. Spine 37:1115–1121

    Article  PubMed  Google Scholar 

  8. Katae Y, Tanaka S, Sakai A, Nagashima M, Hirasawa H, Nakamura T (2009) Elcatonin injections suppress systemic bone resorption without affecting cortical bone regeneration after drill-hole injuries in mice. J Orthop Res 27:1652–1658

    Article  CAS  PubMed  Google Scholar 

  9. Hedstrom M, Sjoberg K, Svensson J, Brosjo E, Dalen N (2001) Changes in biochemical markers of bone metabolism and BMD during the first year after a hip fracture. Acta Orthop Scand 72:248–251

    Article  CAS  PubMed  Google Scholar 

  10. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22:1155–1164

    Article  CAS  PubMed  Google Scholar 

  11. Sakuma M, Endo N, Oinuma T, Endo E, Yazawa T, Watanabe K, Watanabe S (2008) Incidence and outcome of osteoporotic fractures in 2004 in Sado City, Niigata Prefecture, Japan. J Bone Miner Metab 26:373–378

    Article  PubMed  Google Scholar 

  12. Watts NB, Josse RG, Hamdy RC, Hughes RA, Manhart MD, Barton I, Calligeros D, Felsenberg D (2003) Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 88:542–549

    Article  CAS  PubMed  Google Scholar 

  13. Knopp-Sihota JA, Newburn-Cook CV, Homik J, Cummings GG, Voaklander D (2012) Calcitonin for treating acute and chronic pain of recent and remote osteoporotic vertebral compression fractures: a systematic review and meta-analysis. Osteoporos Int 23:17–38

    Article  CAS  PubMed  Google Scholar 

  14. McGuire R (2010) Treating spinal compression fractures. AAOS October 2010 issue. http://www.aaos.org/news/aaosnow/oct10/cover1.asp. Accessed 16 Feb 2015

  15. Morikawa T, Munekata E, Sakakibara S, Noda T, Otani M (1976) Synthesis of eel calcitonin and (asu1,7)-eel-calcitonin: contribution of the disulfide bond to the hormonal activity. Experientia (Basel) 32:1104–1106

    Article  CAS  Google Scholar 

  16. Meller Y, Kestenbaum RS, Shany S, Galinky D, Zuili I, Yankovitch N, Giat J, Confoti A, Torok G (1985) Parathormone, calcitonin, and vitamin D metabolites during normal fracture healing in geriatric patients. Clin Orthop Relat Res 199:272–279

    Google Scholar 

  17. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M (2002) Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging 1. Radiology 225:730–735

    Article  PubMed  Google Scholar 

  18. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  19. Suzukamo Y, Fukuhara S, Kikuchi S, Konno S, Roland M, Iwamoto Y, Nakamura T, Committee on Science Project, Japanese Orthopaedic Association (2003) Validation of the Japanese version of the Roland–Morris Disability Questionnaire. J Orthop Sci 8:543–548

    Article  PubMed  Google Scholar 

  20. Brooks R, EuroQoL Group (1990) A new facility for the measurement of health-related quality of life. Health Policy 16:199–208

    Article  Google Scholar 

  21. Hasegawa K, Homma T, Uchiyama S, Takahashi HE (1997) Osteosynthesis without instrumentation for vertebral pseudarthrosis in osteoporotic spine. J Bone Joint Surg Br 79:452–456

    Article  CAS  PubMed  Google Scholar 

  22. Støen RO, Nordsletten L, Meyer HE, Frihagen JF, Falch JA, Lofthus CM (2012) Hip fracture incidence is decreasing in the high incidence area of Oslo, Norway. Osteoporos Int 23:2527–2534

    Article  PubMed  Google Scholar 

  23. Fisher A, Martin J, Srikusalanukul W, Davis M (2010) Bisphosphonate use and hip fracture epidemiology: ecologic proof from the contrary. Clin Interv Aging 5:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. JAMA 302:1573–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoesel LM, Wehr U, Rambeck WA, Schnettler R, Heiss C (2005) Biochemical bone markers are useful to monitor fracture repair. Clin Orthop Relat Res 440:226–232

    Article  CAS  PubMed  Google Scholar 

  26. Solomon DH, Hochberg MC, Mogun HS, Schneeweiss S (2009) The relation between bisphosphonate use and non-union of fractures of the humerus in older adults. Osteoporos Int 20:895–901

    Article  CAS  PubMed  Google Scholar 

  27. Cao Y, Mori S, Mashiba T, Westmore MS, Westmore MS, Ma L, Sato M, Akiyama T, Shi L, Komatsubara S, Miyamoto K, Norimatsu H (2002) Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 17:2237–2246

    Article  CAS  PubMed  Google Scholar 

  28. Kim TY, Ha YC, Kang BJ, Lee YK, Koo KH (2012) Does early administration of bisphosphonate affect fracture healing in patients with intertrochanteric fractures? J Bone Joint Surg Br 94:956–960

    Article  PubMed  Google Scholar 

  29. Colon-Emeric C, Nordsletten L, Olson S, Major N, Boonen S, Haentjens P, Mesenbrink P, Magaziner J, Adachi J, Lyles KW, Hyldstrup L, Bucci-Rechtweg C, Recknor C, HORIZON Recurrent Fracture Trial (2011) Association between the timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int 22:2329–2336

    Article  CAS  PubMed  Google Scholar 

  30. Orimo H, Morii H, Inoue T, Yamamoto K, Minaguchi H, Ishii Y, Murota K, Fujimaki E, Watsanabe R, Harata S, Honjo H, Fujita T (1996) Effect of elcatonin on involutional osteoporosis. J Bone Miner Metab 14:73–78

    Article  CAS  Google Scholar 

  31. Li Y, Xuan M, Wang B, Yang J, Zhang H, Zhang XZ, Li PQ, Tong JC (2013) Comparison of parathyroid hormone (1-34) and elcatonin in postmenopausal women with osteoporosis: an 18-month randomized multicenter controlled trial in China. Chin Med J 126:457–463

    CAS  PubMed  Google Scholar 

  32. Hongo M, Miyakoshi N, Kasukawa Y, Ishikawa Y, Shimada Y (2015) Additive effect of elcatonin to risedronate for chronic back pain and quality of life in postmenopausal women with osteoporosis: a randomized controlled trial. J Bone Miner Metab 33:432–439

    Article  CAS  PubMed  Google Scholar 

  33. Boskey AL, Gelb BD, Pourmand E, Kudrashov V, Doty SB, Spevak L, Schaffler MB (2009) Ablation of cathepsin K activity in the young mouse causes hypermineralization of long bone and growth plates. Calcif Tissue Int 84:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshimura T, Ito A (2010) Calcitonin. J Pharmacol Sci 135:40–41 (in Japanese)

    CAS  Google Scholar 

  35. Yoshimura T, Ito A, Saito SY, Takeda M, Kuriyama H, Ishikawa T (2012) Calcitonin ameliorates enhanced arterial contractility after chronic constriction injury of the sciatic nerve in rats. Fundam Clin Pharmacol 26:315–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Asahi Kasei Pharma funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Tanaka.

Ethics declarations

Conflict of interest

Shinya Tanaka has received lecture fees from Asahi Kasei Pharma Corporation, Chugai Pharmaceutical, Daiichi Sankyo, DePuy Synthes Japan, Eisai, Eli Lilly Japan, Taisho Toyama Pharmaceutical, and Teijin Pharma. Akira Yoshida has received lecture fees from Asahi Kasei Pharma, Chugai Pharmaceutical, and Eisai. Manabu Ito has received lecture fees from Asahi Kasei Pharma. Shinjiro Kono, Tadanori Oguma, and Kyoichi Hasegawa have no conflicts of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Yoshida, A., Kono, S. et al. Effectiveness of elcatonin for alleviating pain and inhibiting bone resorption in patients with osteoporotic vertebral fractures. J Bone Miner Metab 35, 544–553 (2017). https://doi.org/10.1007/s00774-016-0791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0791-6

Keywords

Navigation