Skip to main content

Advertisement

Log in

Bone mass and bone metabolic indices in male master rowers

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess bone mass and bone metabolic indices in master athletes who regularly perform rowing exercises. The study was performed in 29 men: 14 master rowers and 15 non-athletic, body mass index-matched controls. Dual-energy X-ray absorptiometry measurements of the areal bone mineral density (aBMD) were performed for the total body, regional areas (arms, total forearms, trunk, thoracic spine, pelvis, and legs), lumbar spine (L1–L4), left hip (total hip and femoral neck), and forearm (33 % radius of the dominant and nondominant forearm). Serum concentrations of osteocalcin, collagen type I cross-linked C-telopeptide, visfatin, resistin, insulin, and glucose were determined. Comparative analyses showed significantly lower levels of body fat and higher lean body mass values in the rowers compared to the control group. The rowers also had significantly higher values of total and regional (left arm, trunk, thoracic spine, pelvis, and leg) BMD, as well as higher BMD values for the lumbar spine and the left hip. There were significant differences between the groups with respect to insulin, glucose, and the index of homeostasis model assessment insulin resistance. In conclusion, the systematic training of master rowers has beneficial effects on total and regional BMD and may be recommended for preventing osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck BR, Snow CM (2003) Bone health across the lifespan--exercising our options. Exerc Sport Sci Rev 31:117–122

    Article  PubMed  Google Scholar 

  2. Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42:301–325

    Article  PubMed  Google Scholar 

  3. Ishimoto Y, Yoshida M, Nagata K, Yamada H, Hashizume H, Yoshimura N (2013) Consuming breakfast and exercising longer during high school increases bone mineral density in young adult men. J Bone Miner Metab 31:329–336

    Article  PubMed  Google Scholar 

  4. Nowak A, Straburzyńska-Lupa A, Kusy K, Zieliński J, Felsenberg D et al (2010) Bone mineral density and bone turnover in male masters athletes aged 40–64. Aging Male 13:133–141

    Article  CAS  PubMed  Google Scholar 

  5. Korhonen MT, Heinonen A, Siekkinen J, Isolehto J, Alén M et al (2012) Bone density, structure and strength, and their determinants in aging sprint athletes. Med Sci Sports Exerc 44:2340–2349

    Article  PubMed  Google Scholar 

  6. Karlsson MK, Nordqvist A, Karlsson C (2008) Sustainability of exercise-induced increases in bone density and skeletal structure. Food Nutr Res 52. doi:10.3402/fnr.v52i0.1872

  7. Rumball JS, Lebrun CM, Di Ciacca SR, Orlando K (2005) Rowing injuries. Sports Med 35:537–555

    Article  PubMed  Google Scholar 

  8. Vinther A, Kanstrup IL, Christiansen E, Alkjaer T, Larsson B et al (2006) Exercise-induced rib stress fractures: potential risk factors related to thoracic muscle co-contraction and movement pattern. Scand J Med Sci Sports 16:188–196

    Article  CAS  PubMed  Google Scholar 

  9. Jürimäe J, Purge P, Jürimäe T, von Duvillard SP (2006) Bone metabolism in elite male rowers: adaptation to volume-extended training. Eur J Appl Physiol 97:127–132

    Article  PubMed  Google Scholar 

  10. Maïmoun L, Sultana C (2011) Effects of physical activity on bone remodeling. Metabolism 60:373–388

    Article  PubMed  Google Scholar 

  11. Hill RJ, Davies PS (2002) Energy intake and energy expenditure in elite lightweight female rowers. Med Sci Sports Exerc 34:1823–1829

    Article  PubMed  Google Scholar 

  12. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) Physical activity and bone health. Med Sci Sports Exerc 36:1985–1996

    Article  PubMed  Google Scholar 

  15. Sanada K, Miyachi M, Tabata I, Suzuki K, Yamamoto K et al (2009) Differences in body composition and risk of lifestyle-related diseases between young and older male rowers and sedentary controls. J Sports Sci 27:1027–1034

    Article  PubMed  Google Scholar 

  16. Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke PK et al (2006) Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17:593–599

    Article  CAS  PubMed  Google Scholar 

  17. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM et al (1994) Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. J Bone Min Res 9:1053–1064

    Article  CAS  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man. Diabetes 28:412–419

    CAS  Google Scholar 

  19. Wilks DC, Winwood K, Gilliver SF, Kwiet A, Chatfield M et al (2009) Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone 45:91–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Micklesfield LK, Gray J, Taliep MS (2012) Bone mineral density and body composition of South African cricketers. J Bone Miner Metab 30:232–237

    Article  PubMed  Google Scholar 

  21. Stewart AD, Hannan J (2000) Total and regional bone density in male runners, cyclists, and controls. Med Sci Sports Exerc 32:1373–1377

    Article  CAS  PubMed  Google Scholar 

  22. Nichols JF, Palmer JE, Levy SS (2003) Low bone mineral density in highly trained male master cyclists. Osteoporos Int 14:644–649

    Article  PubMed  Google Scholar 

  23. Morseth B, Emaus N, Jørgensen L (2011) Physical activity and bone: the importance of the various mechanical stimuli for bone mineral density. Norsk Epidemiologi 20:173–178

    Google Scholar 

  24. Schoenau E (2005) From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact 5:232–238

    CAS  PubMed  Google Scholar 

  25. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  CAS  PubMed  Google Scholar 

  26. Asaka M, Kawano H, Higuchi M (2012) Rowing as an aerobic and resistance exercise for elderly people. J Phys Fitness Sports Med 1:227–234

    Article  Google Scholar 

  27. Asaka M, Usui C, Ohta M, Takai Y, Fukunaga T et al (2010) Elderly oarsmen have larger trunk and thigh muscles and greater strength than age-matched untrained men. Eur J Appl Physiol 108:1239–1245

    Article  PubMed  Google Scholar 

  28. Yoshiga CC, Higuchi M, Oka J (2002) Rowing prevents muscle wasting in older men. Eur J Appl Physiol 88:1–4

    Article  PubMed  Google Scholar 

  29. Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680

    Article  CAS  PubMed  Google Scholar 

  30. Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    Article  CAS  PubMed  Google Scholar 

  31. Kusy K, Zieliński J, Pilaczyńska-Szcześniak Ł (2013) Insulin sensitivity and β-cell function estimated by HOMA2 model in sprint-trained athletes aged 20–90 years vs endurance runners and untrained participants. J Sport Sci 15:1656–1664

    Article  Google Scholar 

  32. Fernández-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gómez-Ambrosi J et al (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94:237–245

    Article  PubMed  Google Scholar 

  33. Saleem U, Mosley TH, Kullo IJ (2010) Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 30:1474–1478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wieczorek-Baranowska A, Nowak A, Pilaczyńska-Szcześniak Ł (2012) Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism 61:542–545

    Article  CAS  PubMed  Google Scholar 

  35. Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH et al (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol (Oxf) 63:131–138

    Article  CAS  Google Scholar 

  36. Xie H, Tang SY, Luo XH, Huang J, Cui RR et al (2007) Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int 80:201–210

    Article  CAS  PubMed  Google Scholar 

  37. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B et al (2004) Regulation of fasted blood glucose by resistin. Science 303:1195–1198

    Article  CAS  PubMed  Google Scholar 

  38. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430

    Article  CAS  PubMed  Google Scholar 

  39. Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44:25–36

    Article  CAS  PubMed  Google Scholar 

  40. Perseghin G, Burska A, Lattuada G, Alberti G, Costantino F et al (2006) Increased serum resistin in elite endurance athletes with high insulin sensitivity. Diabetologia 49:1893–1900

    Article  CAS  PubMed  Google Scholar 

  41. Jürimäe J, Rämson R, Mäestu J, Purge P, Jürimäe T et al (2009) Plasma visfatin and ghrelin response to prolonged sculling in competitive male rowers. Med Sci Sports Exerc 41:137–143

    Article  PubMed  Google Scholar 

  42. Śliwicka E, Pilaczyńska-Szcześniak Ł, Nowak A, Zieliński J (2012) Resistin, visfatin and insulin sensitivity in selected phases of annual training cycle of triathletes. Acta Physiol Hung 99:51–60

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Śliwicka.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śliwicka, E., Nowak, A., Zep, W. et al. Bone mass and bone metabolic indices in male master rowers. J Bone Miner Metab 33, 540–546 (2015). https://doi.org/10.1007/s00774-014-0619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0619-1

Keywords

Navigation