Skip to main content
Log in

Structure-driven retention model for optimization of ternary solvent systems in reversed-phase liquid chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A new approach is presented fro the prediction of retention in reversed-phase liquid chromatography using ternary mobile phase compositions. The solvation parameter model is used to create the system constants that characterize the properties of the mobile and stationary phases in terms of the relative ease of cavity formation, and differences in dispersion, lone pair electron, dipole-type, and hydrogen-bond association interactions for all solvent compasitions employed. A statistical mixture-design approach provides system surfaces and models for the variation of individual system constants as a function of ternary solvent composition. The models for the system surfaces allow the retention factor to be predicted as a function of mobile phase composition for any compound whose descriptor values are known, or can be obtained from estimation rules or determined by experiment. The method is validated using a large literature data base for the retention factor of up to 46 varied aromatic solutes in 72 methonolacetonitrile-water and methonol-tetrahydrofuran-water mobile phase compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Poole, S. K. Poole, “Chromatography Today,” Elsevier, Amsterdam, 1991.

    Google Scholar 

  2. J. G. Dorsey, K. A. Dill, Chew. Rev.89, 331 (1989).

    Article  CAS  Google Scholar 

  3. R. Tijssen, P. J. Schoenmakers, M. R. Bohmer, L. K. Koopal, H. A. H. Billiet, J. Chromatogr. A656, 135 (1993).

    Article  CAS  Google Scholar 

  4. J. A. Lewis, L. R. Snyder, J. W. Dolan, J. Chromatogr. A,721, 15 (1996).

    Article  CAS  Google Scholar 

  5. L. R. Snyder, J. Chromatogr. B689, 105 (1997).

    CAS  Google Scholar 

  6. L. R. Snyder, J. J. Kirkland, J. L. Glajch, “Practical HPLC Method Development,” Wiley, New York, 1997.

    Google Scholar 

  7. T. Hamoir, D. L. Massart, W. King, S. Kokot, K. Douglas, J. Chromatogr. Sci.31, 393 (1993).

    CAS  Google Scholar 

  8. J. Fekete, G. Morovjan, F. Czizmadia, F. Darvas, J. Chromatogr. A660, 33 (1994).

    Article  CAS  Google Scholar 

  9. S. V. Galushko, A. A. Kamenchuk, G. L. Pit, J. Chromatogr. A660, 47 (1994).

    Article  CAS  Google Scholar 

  10. G. Szepesi, K. Valko, J. Chromatogr.550, 87 (1991).

    Article  CAS  Google Scholar 

  11. M. H. Abraham, Chem. Soc. Rev.22, 73 (1993).

    Article  CAS  Google Scholar 

  12. M. H. Abraham, inP. Politzer, J. S. Murray (Eds.), “Quantitative Treatment of Soute/Solvent Interactions”, Elsevier, Amsterdam, 1994, p. 83–134.

    Google Scholar 

  13. M. H. Abraham, H. S. Chadhar, inV. Pliska, B. Testar, H. van de Waterbeemed (Eds.), “Lipophilicity in Drug Action and Toxicology,” VCH, Weinheim, Germany, 1996, p. 311–337.

    Google Scholar 

  14. K. G. Miller, C. F. Poole, J. High Resolut. Chromatogr.17, 125 (1994).

    Article  CAS  Google Scholar 

  15. D. S. Seibert, C. F. Poole, J. High Resolut. Chromatogr.21, in press (1998).

  16. D. S. Seibert, C. F. Poole, Anal. Common.35, 147 (1998).

    Article  CAS  Google Scholar 

  17. D. S. Seibert, C. F. Poole, J. High Resolut. Chromatogr.18, 226 (1995).

    Article  CAS  Google Scholar 

  18. D. S. Seibert, C. F. Poole, Chromatographia41, 51 (1995).

    Article  CAS  Google Scholar 

  19. D. S. Seibert, C. F. Poole, M. H. Abraham, Analyst121, 511 (1996).

    Article  CAS  Google Scholar 

  20. D. Bolliet, C. F. Poole, Chromatographia46, 381 (1997).

    CAS  Google Scholar 

  21. D. Bolliet, C. F. Poole, Analyst123, 295 (1998).

    Article  CAS  Google Scholar 

  22. D. Bolliet, C. F. Poole, M. Roses, Anal. Chim. Acta368, 129 (1998).

    Article  CAS  Google Scholar 

  23. W. Kiridena, C. F. Poole, Anal. Common.34, 195 (1997).

    Article  CAS  Google Scholar 

  24. W. Kiridena, C. F. Poole, J. Chromatogr. A802, 335 (1998).

    Article  CAS  Google Scholar 

  25. S. K. Poole, C. F. Poole, Anal. Common.34, 247 (1997).

    Article  CAS  Google Scholar 

  26. K. Valko, M. Plass, C. Bevan, D. Reynolds, M. H. Abraham, J. Chromatogr. A797, 41 (1998).

    Article  CAS  Google Scholar 

  27. M. H. Abraham, M. Roses, C. F. Poole, S. K. Poole, J. Phys. Org. Chem.10, 358 (1997).

    Article  CAS  Google Scholar 

  28. M. H. Abraham, H. S. Chadha, R. A. E. Leitao, R. C. Mitchell, W. J. Lambert, R. Kaliszan, A. Nasal, P. Haber, J. Chromatogr. A766, 35 (1997).

    Article  CAS  Google Scholar 

  29. A. Nasal, P. Haber, R. Kaliszan, E. Forgacs, T. Cserhati, M. H. Abraham, Chromatographia43, 484 (1996).

    Article  CAS  Google Scholar 

  30. M. H. Abraham, H. S. Chadha, A. J. Leo, J. Chromatogr. A685, 203 (1994).

    Article  CAS  Google Scholar 

  31. M. H. Abraham, M. Roses, J. Phys. Org. Chew.7, 672 (1994).

    Article  CAS  Google Scholar 

  32. P. T. Jackson, M. R. Schure, T. M. Weber, P. W. Carr, Anal. Chem.69, 416 (1997).

    Article  CAS  Google Scholar 

  33. L. C. Tan, P. W. Carr, J. Chromatogr. A799, 1 (1998).

    Article  CAS  Google Scholar 

  34. L. Tan, P. W. Carr, M. H. Abraham, J. Chromatogr A752, 1 (1996).

    Article  CAS  Google Scholar 

  35. J. Li, P. W. Carr, Anal. Chim. Acta334, 239 (1996).

    Article  CAS  Google Scholar 

  36. B. Buszewski, R. M. Gaszala-Kopciuch, M. Markuszewski, R. Kaliszan, Anal. Chem.69, 3277 (1997).

    Article  CAS  Google Scholar 

  37. J. A. Cornell, “Experiment with Mixtures. Designs, Models, and Analysis of Mixture Data”, Wiley, New York, 1990.

    Google Scholar 

  38. P. M. J. Coenegracht, A. K. Smilde, H. J. Metting, D. A. Doornbos, J. Chromatogr.485, 195 (1989).

    Article  CAS  Google Scholar 

  39. P. J. Schoemakers, H. A. H. Billiet, L. De Galan, J. Chromatogr.218, 259 (1981).

    Google Scholar 

  40. M. H. Abraham, J. Phys. Org. Chem.6, 660 (1994).

    Article  Google Scholar 

  41. M. H. Abraham, J. Andonian-Haftvan, G. S. Whitting, A. Leo, R. S. Taft, J. Chem. Soc Perkin Trans.2, 1777 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiridena, W., Poole, C.F. Structure-driven retention model for optimization of ternary solvent systems in reversed-phase liquid chromatography. Chromatographia 48, 607–614 (1998). https://doi.org/10.1007/BF02467589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02467589

Key Words

Navigation