Skip to main content

Advertisement

Log in

Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The creatine/phosphocreatine/creatine kinase circuit is instrumental in regulating high-energy phosphate metabolism, and the maintenance of cellular energy turnover. The mechanisms by which creatine is able to buffer and regulate cellular energy balance, maintain acid–base balance, and reduce the effects of oxidative stress have led to a large number of studies into the use of creatine supplementation in exercise performance and to treat diseases associated with cellular energy depletion. Some of these studies have identified sex-specific responses to creatine supplementation, as such; there is the perception, that females might be less receptive to the benefits of creatine supplementation and therapy, compared to males. This review will describe the differences in male and female physique and physiology that may account for such differences, and discuss the apparent endocrine modulation of creatine metabolism in females. Hormone-driven changes to endogenous creatine synthesis, creatine transport and creatine kinase expression suggest that significant changes in this cellular energy circuit occur during specific stages of a female’s reproductive life, including pregnancy and menopause. Recent studies suggest that creatine supplementation may be highly beneficial for women under certain conditions, such as depression. A greater understanding of these pathways, and the consequences of alterations to creatine bioavailability in females are needed to ensure that creatine is used to full advantage as a dietary supplement to optimize and enhance health outcomes for women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham G (1983) Nutritional factors in the etiology of the premenstrual tension syndromes. J Reprod Med 28:446–464

    CAS  PubMed  Google Scholar 

  • Adcock KH, Nedelcu J, Loenneker T, Martin E, Wallimann T, Wagner BP (2002) Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci 24:382–388

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ (2012) Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36:1442–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF (2010) Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology 35:534

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Debold JF, Rios M, Kanarek RB (2015) Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats. Pharmacol Biochem Behav 130:22–33

    Article  CAS  PubMed  Google Scholar 

  • Bebbington P, Dunn G, Jenkins R, Lewis G, Brugha T, Farrell M, Meltzer H (2003) The influence of age and sex on the prevalence of depressive conditions: report from the National Survey of Psychiatric Morbidity. Int Rev Psychiatry 15:74–83

    Article  CAS  PubMed  Google Scholar 

  • Berger R, Middelanis J, Vaihinger H-M, Mies G, Wilken B, Jensen A (2004) Creatine protects the immature brain from hypoxic-ischemic injury. J Soc Gynecol Investig 11:9–15

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Villard A-M, Speer O, Wallimann T, Bachmann C (2005) Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 5:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun B, Horton T (2001) Endocrine regulation of exercise substrate utilization in women compared to men. Exerc Sport Sci Rev 29:149–154

    Article  CAS  PubMed  Google Scholar 

  • Brosnan J, Brosnan M (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  CAS  PubMed  Google Scholar 

  • Bundey S, Crawley JM, Edwards J, Westhead R (1979) Serum creatine kinase levels in pubertal, mature, pregnant, and postmenopausal women. J Med Genet 16:117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannata DJ, Ireland Z, Dickinson H, Snow RJ, Russell AP, West JM, Walker DW (2010) Maternal creatine supplementation from mid-pregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage. Pediatr Res 68:393–398

    CAS  PubMed  Google Scholar 

  • Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  • Dawson DM, Eppenberger HM, Kaplan NO (1967) The comparative enzymology of creatine kinases II. Physical and chemical properties. J Biol Chem 242:210–217

    CAS  PubMed  Google Scholar 

  • Delanghe J, de Slypere J, de Buyzere M, Robbrecht J, Wieme R, Vermeulen A (1989) Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem 35:1802–1803

    CAS  PubMed  Google Scholar 

  • Dickinson H, Ireland ZJ, Larosa DA, O’Connell BA, Ellery S, Snow R, Walker DW (2013) Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse. Reprod Sci 20:1096–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson H, Ellery S, Ireland Z, Larosa D, Snow R, Walker DW (2014) Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth 14:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellery SJ, Ireland Z, Kett MM, Snow R, Walker DW, Dickinson H (2012) Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Pediatr Res 73:201–208

    Article  PubMed  Google Scholar 

  • Ellery SJ, Larosa DA, Kett MM, Della Gatta PA, Snow RJ, Walker DW, Dickinson H (2015) Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice. Amino acids 1–12

  • Ellery SJ, Larosa DA, Kett MM, Della Gatta PA, Snow RJ, Walker DW, Dickinson H (2015) Maternal creatine homeostasis is altered during gestation in the spiny mouse: is this a metabolic adaptation to pregnancy? BMC Pregnancy and Childbirth 15, 92

  • Ellington WR (1989) Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143:177–194

    CAS  PubMed  Google Scholar 

  • Emera D, Romero R, Wagner G (2012) The evolution of menstruation: a new model for genetic assimilation. BioEssays 34:26–35

    Article  CAS  PubMed  Google Scholar 

  • Emery AE, Pascasio FM (1965) The effects of pregnancy on the concentration of creatine kinase in serum, skeletal muscle, and myometrium. Am J Obstet Gynecol 91:18–22

    Article  CAS  PubMed  Google Scholar 

  • Eppenberger H, Eppenberger M, Richterich R, Aebi H (1964) The ontogeny of creatine kinase isozymes. Dev Biol 10:1–16

    Article  CAS  PubMed  Google Scholar 

  • Eppenberger HM, Dawson DM, Kaplan NO (1967) The comparative enzymology of creatine kinases I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem 242:204–209

    CAS  PubMed  Google Scholar 

  • Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ (2010) Boys live dangerously in the womb. Am J Human Biol 22:330–335

    Article  Google Scholar 

  • Evans NA (2004) Current concepts in anabolic-androgenic steroids. Am J Sports Med 32:534–542

    Article  PubMed  Google Scholar 

  • Feldman EB (1999) Creatine: a dietary supplement and ergogenic aid. Nutr Rev 57:45–50

    Article  CAS  PubMed  Google Scholar 

  • Forsberg A, Nilsson E, Werneman J, Bergstrom J, Hultman E (1991) Muscle composition in relation to age and sex. Clin Sci (Lond) 81:249–256

    Article  CAS  Google Scholar 

  • Fuchs E, Czéh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 14:S481–S490

    Article  CAS  PubMed  Google Scholar 

  • Furlanetto R, Underwood L, Wyk JV, Handwerger S (1978) Serum immunoreactive somatomedin-c is elevated late in pregnancy 1. J Clin Endocrinol Metabol 47:695–698

    Article  CAS  Google Scholar 

  • Gerber I, Ap Gwynn I, Alini M, Wallimann T (2005) Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater 10:8–22

    CAS  PubMed  Google Scholar 

  • Gilboa N, Swanson JR (1976) Serum creatine phosphokinase in normal newborns. Arch Dis Child 51:283–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godsland IF (1996) The influence of female sex steroids on glucose metabolism and insulin action. J Intern Med Suppl 738:1

    CAS  PubMed  Google Scholar 

  • Gotshalk LA, Kraemer WJ, Mendonca MA, Vingren JL, Kenny AM, Spiering BA, Hatfield DL, Fragala MS, Volek JS (2008) Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol 102:223–231

    Article  CAS  PubMed  Google Scholar 

  • Gualano B, Artioli GG, Poortmans JR, Junior AHL (2010) Exploring the therapeutic role of creatine supplementation. Amino Acids 38:31–44

    Article  CAS  PubMed  Google Scholar 

  • Guidi C, Potenza L, Sestili P, Martinelli C, Guescini M, Stocchi L, Zeppa S, Polidori E, Annibalini G, Stocchi V (2008) Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochimica et Biophysica Acta (BBA) General Subjects 1780:16–26

  • Guimbal C, Kilimann M (1993) A Na (+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268:8418–8421

    CAS  PubMed  Google Scholar 

  • Haas RC, Korenfeld C, Zhang Z, Perryman B, Roman D, Strauss A (1989) Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem 264:2890–2897

    CAS  PubMed  Google Scholar 

  • Hammarbäck S, Bäckström T, Hoist J, Schoultz B, Lyrenäs S (1985) Cyclical mood changes as in the premenstrual tension syndrome during sequential estrogen-progestagen postmenopausal replacement therapy. Acta Obstet Gynecol Scand 64:393–397

    Article  PubMed  Google Scholar 

  • Hasegawa S, Kato K, Takashi M, Zhu Y, Yokoi K, Kobayashi H, Ando T, Obata K, Kondo A, Miyake K (1992) Effect of extracorporeal shockwave lithotripsy for urolithiasis on concentrations of creatine kinase isozymes in patient serum and urine. Urol Int 48:420–424

    Article  CAS  PubMed  Google Scholar 

  • Hellem T, Renshaw PF (2015) Preliminary results from a study evaluating creatine as a treatment option for depression in female methamphetamine users. Drug Alcohol Depend 146:e139

    Article  Google Scholar 

  • Hernandez C, Beaupre G, Carter D (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847

    Article  CAS  PubMed  Google Scholar 

  • Ireland Z, Dickinson H, Snow R, Walker D (2008) Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am J Obstet Gynecol 198:431–436

    Article  PubMed  Google Scholar 

  • Ireland Z, Castillo-Melendez M, Dickinson H, Snow R, Walker D (2011) A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience

  • Jacobs H, Heldt H, Klingenberg M (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun 16:516–521

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89:81–88

    CAS  PubMed  Google Scholar 

  • Kalhan SC, Gruca L, Marczewski S, Bennett C (2015) Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation. Amino acids 1–11

  • King B, Spikesman A, Emery AE (1972) The effect of pregnancy on serum levels of creatine kinase. Clin Chim Acta 36:267–269

    Article  CAS  PubMed  Google Scholar 

  • Kondo DG, Sung Y-H, Hellem TL, Fiedler KK, Shi X, Jeong E-K, Renshaw PF (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135:354–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Konttinen A, Halonen P (1963) Serum creatine phosphokinase and α-hydroxybutyric dehydrogenase activities compared with GOT and LDH in myocardial infarction. Cardiology 43:56–67

    Article  CAS  Google Scholar 

  • Konttinen A, Pyörälä T (1963) Serum enzyme activity in late pregnancy, at delivery, and during puerperium. Scand J Clin Lab Invest 15:429–435

    Article  CAS  PubMed  Google Scholar 

  • Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, Gelenberg AJ, Ryan C, Hess A, Harrison W (2000) Gender differences in chronic major and double depression. J Affect Disord 60:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lanza A (1974) Progesterone inhibition of human myometrium creatine phosphokinase activity in the non-gravid subject. BJOG Int J Obstet Gynaecol 81:568–570

    Article  CAS  Google Scholar 

  • Larosa DA, Ellery SJ, Parkington HC, Snow RJ, Walker DW, Dickinson H (2016) Maternal creatine supplementation during pregnancy prevents long-term changes in diaphragm muscle structure and function after birth asphyxia. Plos One. doi:10.1371/journal.pone.0149840

    PubMed  PubMed Central  Google Scholar 

  • Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, Cohen BM, Renshaw PF (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res Neuroimaging 123:87–100

    Article  CAS  PubMed  Google Scholar 

  • Malnick S, Shaer A, Soreq H, Kaye A, Litwack G (1983) Estrogen-induced creatine kinase in the reproductive system of the immature female rat. Endocrinology 113:1907–1909

    Article  CAS  PubMed  Google Scholar 

  • Mellanby E (1913) The metabolism of lactating women. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, pp 88–109

  • Mihic S, Macdonald JR, McKenzie S, Tarnopolsky MA (2000) Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc 32:291–296

    Article  CAS  PubMed  Google Scholar 

  • Miller R, Davis B, Brent R, Koszalka T (1977) Creatine transport by rat placentas. Am J Physiol 233:E308–E315

    CAS  PubMed  Google Scholar 

  • Miller R, Davis B, Brent R, Koszalka T (1974) Transport of creatine in the human placenta pharmacologist 1974. Am Soc Pharn Exp Ther 9650 Rockville Pike, Bethesda, MD, pp 305–305

  • Nash S, Giros B, Kingsmore S, Rochelle J, Suter S, Gregor P, Seldin M, Caron M (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Recept Channels 2:165–174

    CAS  PubMed  Google Scholar 

  • Neves JrM, Gualano B, Roschel H, Fuller R, Benatti FB, Pinto AL, Lima FR, Pereira RM, Lancha JrAH, Bonfa E (2011) Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 43(8):1538–1543

    Article  Google Scholar 

  • Norton JP, Clarkson PM, Graves JE, Litchfield P, Kirwan J (1985) Serum creatine kinase activity and body composition in males and females. Human biology 591–598

  • O’Connell B, Moritz K, Walker D, Dickinson H (2013) Sexually dimorphic placental development throughout gestation in the spiny mouse (Acomys cahirinus). Placenta 34:119–126

    Article  PubMed  Google Scholar 

  • Odoom JE, Kemp GJ, Radda GK (1996) The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 158:179–188

    Article  CAS  PubMed  Google Scholar 

  • Osathanondh R, Tulchinsky D, Chopra IJ (1976) Total and free thyroxine and triiodothyronine in normal and complicated pregnancy. J Clin Endocrinol Metabol 42:98–104

    Article  CAS  Google Scholar 

  • Parise G, Mihic S, Maclennan D, Yarasheski K, Tarnopolsky M (2001) Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol 91:1041–1047

    CAS  PubMed  Google Scholar 

  • Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D, Ray S, Wallimann T, Ray M (2012) A short review on creatine, creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Payne RM, Friedman DL, Grant JW, Perryman MB, Strauss AW (1993) Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265:E624–E624

    CAS  PubMed  Google Scholar 

  • Powers ME, Arnold BL, Weltman AL, Perrin DH, Mistry D, Kahler DM, Kraemer W, Volek J (2003) Creatine supplementation increases total body water without altering fluid distribution. J Athl Train 38:44

    PubMed  PubMed Central  Google Scholar 

  • Riehemann S, Volz HP, Wenda B, Hübner G, Rössge G, Rzanny R, Sauer H (1999) Frontal lobe in vivo31P-MRS reveals gender differences in healthy controls, not in schizophrenics. NMR Biomed 12:483–489

    Article  CAS  PubMed  Google Scholar 

  • Rudolph N, Gross RT (1966) Creatine phosphokinase activity in serum of newborn infants as an indicator of fetal trauma during birth. Pediatrics 38:1039–1046

    CAS  PubMed  Google Scholar 

  • Sartini S, Lattanzi D, Ambrogini P, di Palma M, Galati C, Savelli D, Polidori E, Calcabrini C, Rocchi M, Sestili P (2016) Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring. Neuroscience 312:120–129

    Article  CAS  PubMed  Google Scholar 

  • Schneider EL, Guralnik JM (1990) The aging of America: impact on health care costs. JAMA 263:2335–2340

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Avital A, Drobot M, Lukanin A, Derevenski A, Sandbank S, Weizman A (2007) Serum creatine kinase level in unmedicated nonpsychotic, psychotic, bipolar and schizoaffective depressed patients. Eur Neuropsychopharmacol 17:194–198

    Article  CAS  PubMed  Google Scholar 

  • Seifried HE (2007) Oxidative stress and antioxidants: a link to disease and prevention? J Nutr Biochem 18:168–171

    Article  CAS  PubMed  Google Scholar 

  • Sestili P, Martinelli C, Colombo E, Barbieri E, Potenza L, Sartini S, Fimognari C (2011) Creatine as an antioxidant. Amino Acids 40:1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Sömjen D, Weisman Y, Harell A, Berger E, Kaye AM (1989) Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Proc Natl Acad Sci 86:3361–3365

    Article  PubMed  PubMed Central  Google Scholar 

  • Sömjen D, Weisman Y, Mor Z, Harell A, Kaye A (1991) Regulation of proliferation of rat cartilage and bone by sex steroid hormones. J Steroid Biochem Mol Biol 40:717–723

    Article  PubMed  Google Scholar 

  • Stallings R, Olson E, Strauss A, Thompson L, Bachinski L, Siciliano M (1988) Human creatine kinase genes on chromosomes 15 and 19, and proximity of the gene for the muscle form to the genes for apolipoprotein C2 and excision repair. Am J Hum Genet 43:144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomure M (1996) Regulation of creatine kinase isoenzymes in human placenta during early, mid-, and late gestation. J Soc Gynaecol Investig 3:322–327

    Article  CAS  Google Scholar 

  • Turner DC, Wallimann T, Eppenberger HM (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci 70:702–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volek JS, Forsythe CE, Kraemer WJ (2006) Nutritional aspects of women strength athletes. Br J Sports Med 40:742–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242

    CAS  PubMed  Google Scholar 

  • Wallimann T, Hemmer W (1994) Creatine kinase in non-muscle tissues and cells. Cellular bioenergetics: role of coupled creatine kinases. Springer

  • Wallimann T, Turner DC, Eppenberger HM (1977) Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol 75:297–317

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallimann T, Tokarska‐Schlattner M, Neumann D, Epand RM, Epand RF, Andres RH, Widmer HR, Hornemann T, Saks V, Agarkova I (2007) The phosphocreatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals, and enhancement by creatine supplementation. Molecular system bioenergetics: Energy for life 195–264

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 1–26

  • Wilken B, Ramirez J, Probst I, Richter D, Hanefeld F (1998) Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res 43:8–14

    Article  CAS  PubMed  Google Scholar 

  • Williams T, Walz E, Lane A, Pebole M, Hackney A (2015) The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women. Biol Sport 32:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

HD is an NHMRC Career Development Fellow & DWW is a Distinguished Researcher of the Cerebral Palsy Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayley Dickinson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellery, S.J., Walker, D.W. & Dickinson, H. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids 48, 1807–1817 (2016). https://doi.org/10.1007/s00726-016-2199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2199-y

Keywords

Navigation