Skip to main content
Log in

Creatine as an antioxidant

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Creatine monohydrate (Cr), the most diffuse supplement in the sports industry, is receiving greater attention because of its beneficial effects in a wide number of human degenerative diseases and conditions. These effects can be barely explained on the basis of the sole ergogenic role of the Cr/CrP system. Indeed, a wide number of research articles indicate that Cr is capable of exerting multiple, non-energy related, effects on diverse and relevant cellular targets. Among these effects, the antioxidant activity of Cr emerges as an additional mechanism which is likely to play a supportive role in the Cr-cytoprotection paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfieri RR, Bonelli MA, Cavazzoni A, Brigotti M, Fumarola C, Sestili P, Mozzoni P, De Palma G, Mutti A, Carnicelli D, Vacondio F, Silva C, Borghetti AF, Wheeler KP, Petronini PG (2006) Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J Physiol 576:391–401

    Article  PubMed  CAS  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse (New York NY) 60:118–123

    CAS  Google Scholar 

  • Andres RH, Ducray AD, Huber AW, Perez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95:33–45

    Article  PubMed  CAS  Google Scholar 

  • Ardite E, Barbera JA, Roca J, Fernandez-Checa JC (2004) Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-kappaB activation. Am J Pathol 165:719–728

    Article  PubMed  CAS  Google Scholar 

  • Azzi A, Davies KJ, Kelly F (2004) Free radical biology—terminology and critical thinking. FEBS Lett 558:3–6

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Beckers J, Schneider I, Holter SM, Haack T, Ruthsatz T, Vogt-Weisenhorn DM, Becker L, Genius J, Rujescu D, Irmler M, Mijalski T, Mader M, Quintanilla-Martinez L, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W, Schmidt J, Klopstock T (2007) Creatine improves health and survival of mice. Neurobiol Aging 29:1401–1411

    Google Scholar 

  • Berneburg M, Gremmel T, Kurten V, Schroeder P, Hertel I, von Mikecz A, Wild S, Chen M, Declercq L, Matsui M, Ruzicka T, Krutmann J (2005) Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol 125:213–220

    PubMed  CAS  Google Scholar 

  • Biesalski HK, Tinz J (2008) Nutritargeting. Adv Food Nutr Res 54:179–217

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Bachmann C, Henry H (2007) Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Sub-cell Biochem 46:67–81

    Article  Google Scholar 

  • Bregeon D, Sarasin A (2005) Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res 577:293–302

    PubMed  CAS  Google Scholar 

  • Brizzi A, Giusti A, Giacchetti P, Stefanelli S, Provinciali L, Ceravolo MG (2004) A randomised controlled trial on the efficacy of hydroelectrophoresis in acute recurrences in chronic low back pain patients. Europa Medicophysica 40:303–309

    PubMed  CAS  Google Scholar 

  • Brosnan ME, Edison EE, da Silva R, Brosnan JT (2007) New insights into creatine function and synthesis. Adv Enzyme Regul 47:252–260

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15:1753–1765

    PubMed  CAS  Google Scholar 

  • Copeland WC (2010) The mitochondrial DNA polymerase in health and disease. Subcell Biochem 50:211–222

    Article  PubMed  Google Scholar 

  • De Deyn PP, Macdonald RL (1990) Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol 28:627–633

    Article  PubMed  Google Scholar 

  • Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M (2007) Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol 293:C1263–C1271

    Article  PubMed  CAS  Google Scholar 

  • Ducray AD, Schlappi JA, Qualls R, Andres RH, Seiler RW, Schlattner U, Wallimann T, Widmer HR (2007) Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. J Neurosci Res 85:1863–1875

    Article  PubMed  CAS  Google Scholar 

  • Felber S, Skladal D, Wyss M, Kremser C, Koller A, Sperl W (2000) Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res 22:145–150

    PubMed  CAS  Google Scholar 

  • Fimognari C, Sestili P, Lenzi M, Bucchini A, Cantelli-Forti G, Hrelia P (2008) RNA as a new target for toxic and protective agents. Mutat Res 648:15–22

    PubMed  CAS  Google Scholar 

  • Fimognari C, Sestili P, Lenzi M, Cantelli-Forti G, Hrelia P (2009) Protective effect of creatine against RNA damage. Mutat Res 670:59–67

    PubMed  CAS  Google Scholar 

  • Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, Vecchiet L, Fano G (2004) The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol 39:17–24

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268

    Article  PubMed  CAS  Google Scholar 

  • Gordon A, Hultman E, Kaijser L, Kristjansson S, Rolf CJ, Nyquist O, Sylven C (1995) Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res 30:413–418

    PubMed  CAS  Google Scholar 

  • Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH (2009) Exploring the therapeutic role of creatine supplementation. Amino acids 38:31–44

    Article  PubMed  Google Scholar 

  • Guidarelli A, Sestili P, Cossarizza A, Franceschi C, Cattabeni F, Cantoni O (1995) Evidence for dissimilar mechanisms of enhancement of inorganic and organic hydroperoxide cytotoxicity by l-histidine. J Pharmacol Exp Ther 275:1575–1582

    PubMed  CAS  Google Scholar 

  • Guidi C, Potenza L, Sestili P, Martinelli C, Guescini M, Stocchi L, Zeppa S, Polidori E, Annibalini G, Stocchi V (2008) Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. Biochim Biophys Acta 1780:16–26

    PubMed  CAS  Google Scholar 

  • Hansen MJ, Gualano RC, Bozinovski S, Vlahos R, Anderson GP (2006) Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacol Ther 109:162–172

    Article  PubMed  CAS  Google Scholar 

  • Heinanen K, Nanto-Salonen K, Komu M, Erkintalo M, Alanen A, Heinonen OJ, Pulkki K, Nikoskelainen E, Sipila I, Simell O (1999) Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 29:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Westhof E (2000) Rational drug design and high-throughput techniques for RNA targets. Comb Chem High Throughput Screen 3:219–234

    PubMed  CAS  Google Scholar 

  • Hespel P, Op’t Eijnde B, Van Leemputte M, Urso B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536:625–633

    Article  PubMed  CAS  Google Scholar 

  • Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, Leeuwenburgh C, Dupont-Versteegden EE (2008) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570

    Article  PubMed  CAS  Google Scholar 

  • Holtzman D, Khait I, Mulkern R, Allred E, Rand T, Jensen F, Kraft R (1999) In vivo development of brain phosphocreatine in normal and creatine-treated rabbit pups. J Neurochem 73:2477–2484

    Article  PubMed  CAS  Google Scholar 

  • Hosamani R, Ramesh SR, Muralidhara (2010) Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in drosophila melanogaster supplemented with creatine. Neurochem Res 35:1402–1412

  • Ireland Z, Russell AP, Wallimann T, Walker DW, Snow R (2009) Developmental changes in the expression of creatine synthesizing enzymes and creatine transporter in a precocial rodent, the spiny mouse. BMC Dev Biol 9:39

    Google Scholar 

  • Kang BP, Urbonas A, Baddoo A, Baskin S, Malhotra A, Meggs LG (2003) IGF-1 inhibits the mitochondrial apoptosis program in mesangial cells exposed to high glucose. Am J Physiol 285:F1013–F1024

    CAS  Google Scholar 

  • Koga Y, Takahashi H, Oikawa D, Tachibana T, Denbow DM, Furuse M (2005) Brain creatine functions to attenuate acute stress responses through GABAnergic system in chicks. Neuroscience 132:65–71

    Article  PubMed  CAS  Google Scholar 

  • Kovacic P, Thurn LA (2005) Cardiovascular toxicity from the perspective of oxidative stress, electron transfer, and prevention by antioxidants. Curr Vasc Pharmacol 3:107–117

    Article  PubMed  CAS  Google Scholar 

  • Kuethe F, Krack A, Richartz BM, Figulla HR (2006) Creatine supplementation improves muscle strength in patients with congestive heart failure. Die Pharmazie 61:218–222

    PubMed  CAS  Google Scholar 

  • Langen RC, Schols AM, Kelders MC, Van Der Velden JL, Wouters EF, Janssen-Heininger YM (2002) Tumor necrosis factor-alpha inhibits myogenesis through redox-dependent and -independent pathways. Am J Physiol Cell Physiol 283:C714–C721

    PubMed  CAS  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  • Lenz H, Schmidt M, Welge V, Schlattner U, Wallimann T, Elsasser HP, Wittern KP, Wenck H, Stab F, Blatt T (2005) The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J Invest Dermatol 124:443–452

    Article  PubMed  CAS  Google Scholar 

  • Louis M, Van Beneden R, Dehoux M, Thissen JP, Francaux M (2004) Creatine increases IGF-I and myogenic regulatory factor mRNA in C2C12 cells. FEBS Lett 557:243–247

    Article  PubMed  CAS  Google Scholar 

  • Malatesta M, Perdoni F, Muller S, Pellicciari C, Zancanaro C (2010) Pre-mRNA processing is partially impaired in satellite cell nuclei from aged muscles. J Biomed Biotechnol 410405. Epub 2010 May 19

  • Martinet W, de Meyer GR, Herman AG, Kockx MM (2004) Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest 34:323–327

    Article  PubMed  CAS  Google Scholar 

  • Martinet W, De Meyer GR, Herman AG, Kockx MM (2005) RNA damage in human atherosclerosis: pathophysiological significance and implications for gene expression studies. RNA Biol 2:4–7

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163

    PubMed  CAS  Google Scholar 

  • Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157:142–149

    Article  PubMed  CAS  Google Scholar 

  • Mazzini L, Balzarini C, Colombo R, Mora G, Pastore I, De Ambrogio R, Caligari M (2001) Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results. J Neurol Sci 191:139–144

    Article  PubMed  CAS  Google Scholar 

  • McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235

    Article  PubMed  Google Scholar 

  • Messina S, Altavilla D, Aguennouz M, Seminara P, Minutoli L, Monici MC, Bitto A, Mazzeo A, Marini H, Squadrito F, Vita G (2006) Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168:918–926

    Article  PubMed  CAS  Google Scholar 

  • Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281:37361–37371

    Article  PubMed  CAS  Google Scholar 

  • Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J, Walzel B, Ertl G, Hasenfuss G, Wallimann T (1999) Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100:1847–1850

    PubMed  CAS  Google Scholar 

  • Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118:151–166

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MS, Furian AF, Fighera MR, Fiorenza NG, Ferreira J, Rubin MA, Mello CF, Royes LF (2008) The involvement of the polyamines binding sites at the NMDA receptor in creatine-induced spatial learning enhancement. Behav Brain Res 187:200–204

    Article  PubMed  CAS  Google Scholar 

  • Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534

    Article  PubMed  CAS  Google Scholar 

  • Osbakken M, Ito K, Zhang D, Ponomarenko I, Ivanics T, Jahngen EG, Cohn M (1992) Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology 80:184–195

    Article  PubMed  CAS  Google Scholar 

  • Otten JV, Fitch CD, Wheatley JB, Fischer VW (1986) Thyrotoxic myopathy in mice: accentuation by a creatine transport inhibitor. Metabolism 35:481–484

    Article  PubMed  CAS  Google Scholar 

  • Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176

    PubMed  CAS  Google Scholar 

  • Rakpongsiri K, Sawangkoon S (2008) Protective effect of creatine supplementation and estrogen replacement on cardiac reserve function and antioxidant reservation against oxidative stress in exercise-trained ovariectomized hamsters. Int Heart J 49:343–354

    Article  PubMed  CAS  Google Scholar 

  • Rambo LM, Ribeiro LR, Oliveira MS, Furian AF, Lima FD, Souza MA, Silva LF, Retamoso LT, Corte CL, Puntel GO, de Avila DS, Soares FA, Fighera MR, Mello CF, Royes LF (2009) Additive anticonvulsant effects of creatine supplementation and physical exercise against pentylenetetrazol-induced seizures. Neurochem Int 55:333–340

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH (2008) Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 10:291–315

    Article  PubMed  CAS  Google Scholar 

  • Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28:278–283

    Article  PubMed  CAS  Google Scholar 

  • Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, Wrutniak C, Cabello G (2000) Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 275:2733–2744

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA (2007) Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Santiago AP, Chaves EA, Oliveira MF, Galina A (2008) Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 90:1566–1577

    Article  PubMed  CAS  Google Scholar 

  • Schedel JM, Tanaka H, Kiyonaga A, Shindo M, Schutz Y (1999) Acute creatine ingestion in human: consequences on serum creatine and creatinine concentrations. Life Sci 65:2463–2470

    Article  PubMed  CAS  Google Scholar 

  • Scholz A, Hinssen H (1995) Biphasic pattern of gelsolin expression and variations in gelsolin-actin interactions during myogenesis. Exp Cell Res 219:384–391

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Martinelli C, Ricci D, Fraternale D, Bucchini A, Giamperi L, Curcio R, Piccoli G, Stocchi V (2007) Cytoprotective effect of preparations from various parts of Punica granatum L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems. Pharmacol Res 56:18–26

    Article  PubMed  CAS  Google Scholar 

  • Sestili P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L, Casadei L, D’Emilio A, Falcieri E, Piccoli G, Agostini D, Annibalini G, Paolillo M, Gioacchini AM, Stocchi V (2009) Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol Nutr Food Res 53:1187–1204

    Article  PubMed  CAS  Google Scholar 

  • Sharov VG, Saks VA, Kupriyanov VV, Lakomkin VL, Kapelko VI, Steinschneider A, Javadov SA (1987) Protection of ischemic myocardium by exogenous phosphocreatine. I. Morphologic and phosphorus 31-nuclear magnetic resonance studies. J Thorac Cardiovasc Surg 94:749–761

    PubMed  CAS  Google Scholar 

  • Sipila I, Rapola J, Simell O, Vannas A (1981) Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N Engl J Med 304:867–870

    Article  PubMed  CAS  Google Scholar 

  • Stout JR, Eckerson JM, May E, Coulter C, Bradley-Popovich GE (2001) Effects of resistance exercise and creatine supplementation on myasthenia gravis: a case study. Med Sci Sports Exerc 33:869–872

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71

    Article  PubMed  CAS  Google Scholar 

  • Tannu NS, Rao VK, Chaudhary RM, Giorgianni F, Saeed AE, Gao Y, Raghow R (2004) Comparative proteomes of the proliferating C(2)C(12) myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol Cell Proteomics 3:1065–1082

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA (2007) Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem 46:183–204

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA, Safdar A (2008) The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Appl Physiol Nutr Metabol Physiologie Appliquee Nutr et Metabolisme 33:213–227

    Article  CAS  Google Scholar 

  • Tarnopolsky MA, Mahoney DJ, Vajsar J, Rodriguez C, Doherty TJ, Roy BD, Biggar D (2004) Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 62:1771–1777

    PubMed  CAS  Google Scholar 

  • Tateyama M, Takeda A, Onodera Y, Matsuzaki M, Hasegawa T, Nunomura A, Hirai K, Perry G, Smith MA, Itoyama Y (2003) Oxidative stress and predominant Abeta42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol 105:581–585

    PubMed  CAS  Google Scholar 

  • Tokarska-Schlattner M, Wallimann T, Schlattner U (2002) Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity. Mol Pharmacol 61:516–523

    Article  PubMed  CAS  Google Scholar 

  • Toscano A, Messina S, Campo GM, Di Leo R, Musumeci O, Rodolico C, Aguennouz M, Annesi G, Messina C, Vita G (2005) Oxidative stress in myotonic dystrophy type 1. Free Radic Res 39:771–776

    Article  PubMed  CAS  Google Scholar 

  • Vexler ZS, Ferriero DM (2001) Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol 6:99–108

    Article  PubMed  CAS  Google Scholar 

  • Vilquin JT (2005) Myoblast transplantation: clinical trials and perspectives. Mini-Rev Acta Myol 24:119–127

    CAS  Google Scholar 

  • Vorgerd M, Grehl T, Jager M, Muller K, Freitag G, Patzold T, Bruns N, Fabian K, Tegenthoff M, Mortier W, Luttmann A, Zange J, Malin JP (2000) Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol 57:956–963

    Article  PubMed  CAS  Google Scholar 

  • Walzel B, Speer O, Zanolla E, Eriksson O, Bernardi P, Wallimann T (2002) Novel mitochondrial creatine transport activity Implications for intracellular creatine compartments and bioenergetics. J Biol Chem 277:37503–37511

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DM, Mihm MJ, Bauer JA (2000) Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 294:396–401

    PubMed  CAS  Google Scholar 

  • Witte KK, Clark AL, Cleland JG (2001) Chronic heart failure and micronutrients. J Am Coll Cardiol 37:1765–1774

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

  • Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Chintapalli J, Sodagum L, Baskin S, Malhotra A, Reiss K, Meggs LG (2005) Activated IGF-1R inhibits hyperglycemia-induced DNA damage and promotes DNA repair by homologous recombination. Am J Physiol 289:F1144–F1152

    Article  CAS  Google Scholar 

  • Young JF, Larsen LB, Malmendal A, Nielsen NC, Straadt IK, Oksbjerg N, Bertram HC (2010) Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics. J Int Soc Sports Nutr 7:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Sestili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sestili, P., Martinelli, C., Colombo, E. et al. Creatine as an antioxidant. Amino Acids 40, 1385–1396 (2011). https://doi.org/10.1007/s00726-011-0875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0875-5

Keywords

Navigation