Skip to main content
Log in

High-Field Magnetization and ESR Studies of Two-Dimensional Triangular-Lattice Antiferromagnet Cu2(OH)3Cl

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report the high-field magnetization and electron spin resonance (ESR) for the two-dimensional triangular-lattice antiferromagnet Cu2(OH)3Cl. The compound has an antiferromagnetic (AFM) order at TN = 6.8 K and undergoes a field-induced metamagnetic transition at 3 T. The high-field magnetization up to 50 T shows a half-saturated ferromagnetic (FM)-like magnetization behavior, suggesting that the Cu1 FM chain and the Cu2 AFM chain are decoupled in magnetism. The temperature-dependent ESR spectra follow the development of magnetic correlations and AFM ordering. Corresponding to the magnetic decoupling, the observed ESR modes originate only from the Cu1 spins. The magnetic anisotropy fields are estimated as HA1 = 4.33 T and HA2 = 6.66 T, which are larger than those in Cu2(OH)3Br. The intrachain and interchain exchanges are estimated to be 20 K and − 4.2 K, respectively, for the Cu1 spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. I.S. Jacobs, J. Appl. Phys. 34(4), 1106–1107 (1963)

    Article  ADS  Google Scholar 

  2. S. Blundell, In magnetism in condensed matter, 1st edn. (Oxford University Press, Oxford, New York, 2001)

    Google Scholar 

  3. E. Stryjewski, N. Giordano, Adv. Phys. 26, 487–650 (1977)

    Article  ADS  Google Scholar 

  4. C. Starr, F. Bitter, A.R. Kaufmann, Phys. Rev. 58, 977 (1940)

    Article  ADS  Google Scholar 

  5. I.S. Jacobs, P.E. Lawrence, Phys. Rev. 164(2), 866 (1967)

    Article  ADS  Google Scholar 

  6. R. Alben, J. phys. Soc. Japan 26(2), 261–278 (1969)

    Article  ADS  Google Scholar 

  7. H. Mollymoto, M. Motokawa, M. Date, J. phys. Soc. Japan 49(1), 108–114 (1980)

    Article  ADS  Google Scholar 

  8. A. Narath, J. phys. Soc. Japan 19, 2244–2245 (1964)

    Article  ADS  Google Scholar 

  9. A.L.M. Bongaarts, B. Van Laar, A.C. Bottermana, W.J.M. De Jongea, Phys. Lett. 41A, 411 (1972)

    Article  ADS  Google Scholar 

  10. H. Weitzel, J. Hirte, Phys. Rev. B. 37, 5414 (1988)

    Article  ADS  Google Scholar 

  11. S.P.M. Curley, R. Scatena, R.C. Williams, P.A. Goddard, P. Macchi, T.J. Hicken, T. Lancaster, F. Xiao, S.J. Blundell, V. Zapf, J.C. Eckert, E.H. Krenkel, J.A. Villa, M.L. Rhodehouse, J.L. Manson, Phys. Rev. Mater. 5, 034401 (2021)

    Article  Google Scholar 

  12. L.D. Sanjeewa, V.O. Garlea, R.S. Fishman, M.A. McGuire, J. Xing, H. Cao, J.W. Kolis, A.S. Sefat, Inorg. Chem. 59(2), 1029–1037 (2020)

    Article  Google Scholar 

  13. V.A. Schmidt, S.A. Friedberg, Phys. Rev. B. 1, 2250 (1970)

    Article  ADS  Google Scholar 

  14. M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Phys. Rev. B 86, 144409 (2012)

    Article  ADS  Google Scholar 

  15. K.V. Zakharov, E.A. Zvereva, P.S. Berdonosov, E.S. Kuznetsova, V.A. Dolgikh, L. Clark, C. Black, P. Lightfoot, W. Kockelmann, Z.V. Pchelkina, S.V. Streltsov, O.S. Volkova, A.N. Vasiliev, Phys. Rev. B 90, 214417 (2014)

    Article  ADS  Google Scholar 

  16. H.R. Oswald, Y. Iitaka, S. Locchi, A. Ludi, Helv. Chim. Acta 44, 2103–2109 (1961)

    Article  Google Scholar 

  17. X.G. Zheng, T. Yamashita, M. Hagihala, M. Fujihala, T. Kawae, Phys. B 404, 680 (2009)

    Article  ADS  Google Scholar 

  18. X.G. Zheng, C.N. Xu, Solid State Commun. 131, 509 (2004)

    Article  ADS  Google Scholar 

  19. X.G. Zheng, T. Kawae, Y. Kashitani, C.S. Li, N. Tateiwa, K. Takeda, H. Yamada, C.N. Xu, Y. Ren, Phys. Rev. B 71, 052409 (2005)

    Article  ADS  Google Scholar 

  20. Z.Y. Zhao, H.L. Che, R. Chen, J.F. Wang, X.F. Sun, Z.Z. He, J. Phys.: Condens. Matter 31, 276801 (2019)

    Google Scholar 

  21. H. Zhang, Z. Zhao, D. Gautreau, M. Raczkowski, A. Saha, V.O. Garlea, H. Cao, T. Hong, H.O. Jeschke, S.D. Mahanti, T. Birol, F.F. Assaad, X. Ke, Phys. Rev. Lett. 125, 037204 (2020)

    Article  ADS  Google Scholar 

  22. T.T. Xiao, Z.W. Ouyang, X.C. Liu, J.J. Cao, Z.X. Wang, W. Tong, J. Phys.: Condens. Matter 34, 275804 (2022)

    ADS  Google Scholar 

  23. D.M. Gautreau, A. Saha, T. Birol, Phys. Rev. Materials 5, 024407 (2021)

    Article  ADS  Google Scholar 

  24. A.D. Butterworth, The utilisation of layered hydroxysalts in the separation, immobilisation and long term storage of long-lived radio-anions of nuclear power legacy waste origin, in Doctoral dissertation. (Loughborough University, Loughborough, 2013)

    Google Scholar 

  25. B. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  26. K.V. Zakharov, E.A. Zvereva, E.S. Kuznetsova, P.S. Berdonosov, V.A. Dolgikh, M.M. Markina, A.V. Olenev, A.A. Shakin, O.S. Volkova, A.N. Vasiliev, J. Alloys Compd. 685, 442–447 (2016)

    Article  Google Scholar 

  27. T. Nagamiya, K. Yosida, R. Kubo, Adv. Phys. 4, 1–112 (1955)

    Article  ADS  Google Scholar 

  28. A.I. Kurbakov, A.N. Korshunov, SYu. Podchezertsev, A.L. Malyshev, M.A. Evstigneeva, F. Damay, J. Park, C. Koo, R. Klingeler, E.A. Zvereva, V.B. Nalbandyan, Phys. Rev. B 96, 024417 (2017)

    Article  ADS  Google Scholar 

  29. L.J. de Jongh, A.R. Miedema, Adv. Phys. 23, 1–260 (1974)

    Article  ADS  Google Scholar 

  30. S. Salem-Sugui Jr., W.A. Ortiz, A.-D. de Alvarenga, J. Magn. Magn. Mater. 66, 397 (1987)

    Article  ADS  Google Scholar 

  31. T. Nakano, H. Tsugeno, A. Hanazawa, T. Kashiwagi, Y. Nozue, M. Hagiwara, Phys. Rev. B 88, 174401 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U20A2073).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. U20A2073).

Author information

Authors and Affiliations

Authors

Contributions

TX: Conceptualization, Methodology, Validation, Writing—Original Draft, Supervision. ZO: Conceptualization, Methodology, Validation, Writing—Review & Editing, Funding acquisition, Supervision. XL and JC: Formal analysis, Investigation, Resources, Data Curation. ZX: Formal analysis, Resources, Data Curation. ZW: Conceptualization, Methodology, Validation, Writing—Review & Editing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhongwen Ouyang or Zhenxing Wang.

Ethics declarations

Conflict of Interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the submitted.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Ouyang, Z., Liu, X. et al. High-Field Magnetization and ESR Studies of Two-Dimensional Triangular-Lattice Antiferromagnet Cu2(OH)3Cl. Appl Magn Reson 54, 491–501 (2023). https://doi.org/10.1007/s00723-023-01538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01538-7

Navigation