Skip to main content
Log in

Characterization of the Initial Hydration Process of Ordinary Portland Cement Based on Low-Field NMR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Based on the advantages of nondestructive and noninvasive technique, high stability and continuity, currently, the low-field nuclear magnetic resonance (NMR) analyzing and testing technology (low-field NMR) has been used to characterize the initial hydration process of cement slurry system. As a kind of cement-based material, class G oil-well cement has been widely used in various cementing operations, and the basic research of class G oil-well cement has aroused wide attention. Simultaneously, microfine cement plays an increasingly important role as reinforcing material, especially in the cementing operation of low-temperature formation. Besides, the main advantage of Carr–Purcell–Meiboom–Gill (CPMG) technique with other spin echo techniques is that it allows rapid multiple accumulations of the echo train signal—an important issue in increasing the detection sensitivity at low fields. Therefore, during this study, the initial hydration process of class G oil-well cement and microfine cement was characterized by the values and distribution ranges of the time constants T2i [the attenuation of the function of the transverse magnetization 2 (t) was measured by means of CPMG pulse sequence, normalized to an initial value 2(0) = 1, and decomposed into a sum of exponential functions 2 (t) = Σ pi exp (− t/T2i) with the fractions Σ pi = 1]. As a result, it was confirmed that the low-field NMR has a great advantage in the characterization of early hydration reaction of cement-based material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O.A. Falode, K.K. Salam, A.O. Arinkoola, B.M. Ajagbe, J. Petrol. Explor. Prod. Technol. 3, 297–302 (2013)

    Article  Google Scholar 

  2. G. Bassioni, M.M. Ali, J. Therm. Anal. Calorim. 111, 295–303 (2013)

    Article  Google Scholar 

  3. A. Maleki, I. Frigaard, J. Eng. Math. 2, 1–30 (2017)

    Google Scholar 

  4. S. Hua, X. Yao, Petrol. Sci. 4, 52–59 (2007)

    Article  Google Scholar 

  5. M. Palou, V. Ivica, T. Ifka, M. Boháč, M. Zmrzlý, J. Therm. Anal. Calorim. 116, 597–603 (2014)

    Article  Google Scholar 

  6. C. Sui, Y. Li, Q. Ding, J. Wuhan. Univ. Technol. 30, 142 (2015)

    Article  Google Scholar 

  7. P. Šiler, J. Krátký, I. Kolářová, J. Havlica, J. Brandštetr, Chem. Pap. 67, 213–220 (2013)

    Article  Google Scholar 

  8. X. Wei, Z. Li, Mater. Struct. 38, 411–417 (2005)

    Article  Google Scholar 

  9. J. Zhang, L. Qin, Z. Li, Mater. Struct. 42, 15–24 (2009)

    Article  Google Scholar 

  10. E. Kirtil, M.H. Oztop, Food Eng. Rev. 8, 1–22 (2016)

    Article  Google Scholar 

  11. J.L. Demangeat, P. Gries, B. Poitevin, J.J. Droesbeke, T. Zahaf, F. Maton, R.N. Muller, Appl. Magn. Reson. 26, 465 (2004)

    Article  Google Scholar 

  12. E.M. Lenz, J.M. Weeks, J.C. Lindon, D. Osborn, J.K. Nicholson, Metabolomics 1, 123–136 (2005)

    Article  Google Scholar 

  13. C. Badea, A. Pop, C. Mattea, S. Stapf, I. Ardelean, Appl. Magn. Reson. 45, 1299–1309 (2014)

    Article  Google Scholar 

  14. R. Zhang, J.H. Huo, Z.G. Peng, Q. Feng, D.J. Chen, J.X. Wang, Appl. Magn. Reson. 47, 987–1001 (2016)

    Article  Google Scholar 

  15. P. Boch, A. Plassais, M.P. Pomies, J.P. Korb, N. Lequeux, J. Ceram. Process. Res. 5, 95–100 (2004)

    Google Scholar 

  16. Z.P. Sun, M. Pang, Y. Yang, P.Q. Yang, W.W. Yuan, J. Chin. Ceram. Soc. (in Chinese). 39, 537–543 (2011)

    Google Scholar 

  17. Y. Yu, Z. Sun, M. Pang, P. Yang, J. Wuhan Univ. Technol. 28, 963–967 (2013)

    Article  Google Scholar 

  18. A. Pop, C. Badea, I. Ardelean, Appl. Magn. Reson. 44, 1223–1234 (2013)

    Article  Google Scholar 

  19. P.F. Faure, S. Rodts, Magn. Reson. Imag. 26, 1183–1196 (2008)

    Article  Google Scholar 

  20. P. Meredith, A.M. Donald, K. Luke, J. Mater. Sci. 30, 1921–1930 (1995)

    Article  ADS  Google Scholar 

  21. E.M. Gartner, K.E. Kurtis, P.J.M. Monteiro, Cement Concrete Res. 30, 817–822 (2000)

    Article  Google Scholar 

  22. P. Pichniarczyk, G. Malata, J. Therm. Anal. Calorim. 124, 1–8 (2016)

    Article  Google Scholar 

  23. G. Land, D. Stephan, J. Mater. Sci. 47, 1011–1017 (2012)

    Article  ADS  Google Scholar 

  24. L.B. Jiao, D.J. Chen, D.Y. Feng, X.M. Wang, J. Zhang, Mater. Struct. 49, 279–288 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Jh., Peng, Zg., Ye, Z. et al. Characterization of the Initial Hydration Process of Ordinary Portland Cement Based on Low-Field NMR. Appl Magn Reson 50, 187–198 (2019). https://doi.org/10.1007/s00723-018-1054-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1054-6

Navigation