Skip to main content
Log in

Investigation of Poly(AM/AMPS/MA) on the Retarding Performance of Oil Well Cement

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper, a new kind of oil cement retarder is prepared by aqueous solution polymerization using acrylamide (AM), 2-methyl-2-acrylic amide propyl sulfonic acid (AMPS) and maleic anhydride (MA) as monomers, and then the polymer PAAM (the acronym of polymer is synthesized by AM, AMPS and MA) was characterized by Fourier transform infrared spectroscopy, the paper also introduced the field performance of this new kind of oil well cement retarder PAAM. Additionally, low field nuclear magnetic resonance (LF-NMR) test technology is employed to test the transverse relaxation time T2 distribution of cement slurry in hydration process, the pure cement slurry C and the cement slurry CHN-1 mixed with polymer PAAM were used as the research object. Finally, combined with the scanning electron microscope (SEM), a further exploration about the retarding mechanism of polymer PAAM was conducted, which shows that mainly reflected in the adsorption, precipitation and complexation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Shen, G. Gan, R. Dong, H. Chen, Y. Tan, M. Zhou, J. Mater. Cycles Waste 14, 228–233 (2012)

    Article  Google Scholar 

  2. A. Salhan, J. Billingham, A.C. King, J. Eng. Math. 45, 367–377 (2003)

    Article  MathSciNet  Google Scholar 

  3. N. Nestle, A. Kühn, K. Friedemann, C. Horch, F. Stallmach, G. Herth, Micropor. Mesopor. Mat. 125, 51–57 (2009)

    Article  Google Scholar 

  4. A.M. Neville, Properties of Concrete, 4th edn. (Longman Group UK Limited, Harlow, Essex, UK, 1995), pp. 101–104

    Google Scholar 

  5. H.F.W. Taylor, Cement Chemistry, 2nd edn. (Thomas Telford Publishing, Thomas Telford Services Ltd, London, 1997), p. 230

    Book  Google Scholar 

  6. P.J. Mcdonald, V. Rodin, A. Valori, Cem. Conc. Res. 40, 1656–1663 (2010)

    Article  Google Scholar 

  7. A. Pop, C. Badea, I. Ardelean, Appl. Magn. Reson. 44, 1223–1234 (2013)

    Article  Google Scholar 

  8. C. Badea, A. Pop, C. Mattea, S. Stapf, I. Ardelean, Appl. Magn. Reson. 45, 1299–1309 (2014)

    Article  Google Scholar 

  9. Y.M. Zhang, W. Sun, H.D. Yan, Cem. Concr. Compos. 22, 445–452 (2000)

    Article  Google Scholar 

  10. N. Nestle, Solid State Nucl. Magn. Reson. 25, 80–83 (2004)

    Article  Google Scholar 

  11. N. Nestle, P. Galvosas, J. Kärger, Cem. Conc. Res. 37, 398–413 (2007)

    Article  Google Scholar 

  12. A.J. Bohris, U. Goerke, P.J. McDonald, M. Mulheron, B. Newling, B. Le Page, Magn. Reson. Imaging 16, 455–461 (1998)

    Article  Google Scholar 

  13. A.M. She, W. Yao, Sci. China-Tech. Sci. 53, 1471–1476 (2010)

    Article  Google Scholar 

  14. Z.D. Wang, L.Z. Xiao, T.Y. Liu, Sci. China-Tech. Sci. 47, 265–276 (2004)

    Google Scholar 

  15. M. Tziotziou, E. Karakosta, I. Karatasios, G. Diamantopoulos, A. Sapalidis, M. Fardis, P. Maravelaki-Kalaitzaki, G. Papavassiliou, V. Kilikoglou, Micropor. Mesopor. Mat. 139, 16 (2011)

    Article  Google Scholar 

  16. K. Friedemann, W. Schonfelder, F. Stallmach, J. Kärger, Mater. Struct. 41, 1647–1655 (2008)

    Article  Google Scholar 

  17. E. Gallucci, P. Mathur, K. Scrivener, Cem. Conc. Res. 40, 4–13 (2010)

    Article  Google Scholar 

  18. H. Kosmatka, B. Kerkhoff, W.C. Panarese, Design and Control of Concrete Mixtures, 14th edn. (Portland Cement Association, USA, 2002), pp. 73–118

    Google Scholar 

  19. J. Gołaszewski, J. Szwabowski, Cem. Conc. Res. 34, 235–248 (2004)

    Article  Google Scholar 

  20. L.S. Eoff, B. Doug, High Temperature Synthetic cement Retarder (SPE 028957, International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, SPE, 1995), p. 129

    Google Scholar 

  21. O.F. Joel, ARPN J. Eng. Appl. Scis. 4, 1–7 (2009)

    Google Scholar 

  22. W.P. Halperin, J.Y. Jehng, Y.Q. Song, Magn. Reson. Imaging 12, 169–173 (1994)

    Article  Google Scholar 

  23. V.S. Ramachandran, J.J. Beaudoin, Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications (Noyes Publications/William Andrew Publishing, LLC Norwich, 2002)

    Google Scholar 

  24. P.F. Faure, S. Rodts, Magn. Reson. Imaging 26, 1183–1196 (2008)

    Article  Google Scholar 

  25. B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Cem. Concr. Res. 37, 483–491 (2007)

    Article  Google Scholar 

  26. M. Bogdan, B.J. Balcom, T.W. Bremner, R.L. Armstrong, J. Magn. Reson. A166, 266–269 (1995)

    Article  ADS  Google Scholar 

  27. A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. McDonald, J. Phys. Chem. C 117, 403–412 (2013)

    Article  Google Scholar 

  28. P.K. Mehta, Cem. Conc. Res. 13, 401–406 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Huo, Jh., Peng, Zg. et al. Investigation of Poly(AM/AMPS/MA) on the Retarding Performance of Oil Well Cement. Appl Magn Reson 47, 987–1001 (2016). https://doi.org/10.1007/s00723-016-0814-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0814-4

Keywords

Navigation