Skip to main content
Log in

Cytological attributes of storage tissues in nematode and eriophyid galls: pectin and hemicellulose functional insights

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Cell walls and protoplast may work together or distinctly in the establishment of the functional profiles of gall tissue compartments. This presumption is herein evaluated in three gall systems by immunocytochemical and ultrastructural analyses. The common storage tissues (CSTs) of leaf galls induced by Eriophyidae on Miconia ibaguensis leaves and by Ditylenchus gallaeformans on M. ibaguensis and M. albicans have rigid and porous cell walls due to their composition of pectins. Hemicelluloses in CST cell walls are scarcer when compared to the cell walls of the control leaves, being functionally compensated by rigid pectate gels. The typical nutritive tissues (TNTs) in galls induced by Ditylenchus gallaeformans are similar to promeristematic and secretory cells regarding their enriched cytoplasm, several mitochondria, and proplastids, as well as multivesicular and prolamellar bodies in cell membranes. The cytological features of the feeding cells of Eriophyidae galls indicate that they are not as metabolically active as the cells of the TNT in nematode galls. However, their cell wall composition suggests more plasticity and porosity than the cells of the TNT, which can compensate the less production of nutrients with more transport. The ultrastructural and immunocytochemical profiles of CST cells reveal functional similarities, which are independent of the taxa of the gall inducer or of the host plant. Despite their analogous functionalities, the protoplast and cell wall features of TNT cells of nematode galls and of the feeding cells of the Eriophyidae galls are distinct, and work out through different strategies toward keeping gall developmental site active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls: from chemistry to biology. Garland Science, New York

    Google Scholar 

  • Appezzato-Da-Glória B, Machado SR (2004) Ultrastructural analysis of in vitro direct and indirect organogenesis. Rev Bras Bot 27:429–437

    Google Scholar 

  • Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59

    Article  CAS  Google Scholar 

  • Bozbuga R, Lilley CJ, Knox JP, Urwin PE (2018) Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Sci Rep 8:17302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bragança GP, Oliveira DC, Isaias RMS (2017) Compartmentalization of metabolites and enzymatic mediation in nutritive cell of Cecidomyiidae galls on Piper arboretum Aubl. (Piperaceae). J Plant Stud 6:11–22

    Article  CAS  Google Scholar 

  • Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 118–140

    Google Scholar 

  • Buckeridge MS, Santos HP, Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  • Carneiro RGS, Isaias RMS (2015a) Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis. Protoplasma 252:637–646

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RGS, Isaias RMS (2015b) Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants 7:plv086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carneiro RGS, Oliveira DC, Isaias RMS (2014) Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). Plant Cell Rep 33:2093–2106

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RGS, Pacheco P, Isaias RMS (2015) Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? PLoS One 10(6):e0129331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:71–201

    Article  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Dropkin VH (1969) Cellular responses of plants to nematode infections. Annu Rev Phytopathol 7:101–122

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function and development, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Fahn A (1979) Ultrastructure of nectaries in relation to nectar secretion. Am J Bot 66:977–985

    Article  CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  PubMed  Google Scholar 

  • Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760

    Article  Google Scholar 

  • Ferreira BG, Isaias RMS (2014) Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora 209:391–400

    Article  Google Scholar 

  • Ferreira BG, Carneiro RGS, Isaias RMS (2015) Multivesicular bodies differentiate exclusively in nutritive fast-dividing cells in Marcetia taxifolia galls. Protoplasma 252:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Ferreira BG, Álvarez R, Avritzer SC, Isaias RMS (2017a) Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany 95:173–184

    Article  Google Scholar 

  • Ferreira BG, Avritzer SC, Isaias RMS (2017b) Totipotent nutritive cells and indeterminate growth in galls of Ditylenchus gallaeformans (Nematoda) on reproductive apices of Miconia. Flora 227:36–45

    Article  Google Scholar 

  • Ferreira BG, Oliveira DC, Moreira ASFP, Faria AP, Guedes LM, França MGC, Álvarez R, Isaias RMS (2018) Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms. PLoS One 13:e0205364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira BG, Álvarez R, Bragança GP, Alvarenga DR, Pérez-Hidalgo N, Isaias RMS (2019a) Feeding and other gall facets: patterns and determinants in gall structure. Bot Rev 85:78–106. https://doi.org/10.1007/s12229-019-09207-w

    Article  Google Scholar 

  • Ferreira BG, Freitas MSC, Bragança GP, Moreira ASFP, Carneiro RGS, Isaias RMS (2019b) Enzyme-mediated metabolism in nutritive tissues of galls induced by Ditylenchus gallaeformans (Nematoda: Anguinidae). Plant Biol. https://doi.org/10.1111/plb.13009

    Article  CAS  PubMed  Google Scholar 

  • Formiga AT, Oliveira DC, Ferreira BG, Magalhães TA, Castro AC, Fernandes GW, Isaias RMS (2013) The role of pectic composition of cell walls in the determination of the new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma 250:899–908

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331

    Article  CAS  PubMed  Google Scholar 

  • Gifford EM, Stewart KD (1967) Ultrastructure of the shoot apex of Chenopodium album and certain other seed plants. J Cell Biol 33:131–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaias RMS, Ferreira BG, Alvarenga DR, Barbosa LR, Salminen J-P, Steinbauer MJ (2018) Functional compartmentalisation of nutrients and phenolics in the tissues of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) on Eucalyptus camaldulensis (Myrtaceae). Aust Entomol 57:238–246

    Article  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectic gels in plant cell walls. Plant Cell Environ 7:153–164

    CAS  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4) β-D-galactan. Plant Physiol 113:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones L, Milne JF, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proceedings of the National Academy of Sciences 100:11783–11788. https://doi.org/10.1073/pnas.1832434100

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kostoff D, Kendall J (1929) Studies on the structure and development of certain Cynipid galls. Biol Bull 56:402–458

    Article  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em Morfologia Vegetal. Editora da Universidade Federal Rural do Rio de Janeiro, Seropédica

    Google Scholar 

  • Leroux O, Knox JP, Masschaele B, Bagniewska-Zadworna A, Marcus SE, Claeys M, Van Hoorebeke L, Viane RLL (2011) An extensin-rich matrix lines the carinal canals in Equisetum ramosissimum, which may function as water-conducting channels. Ann Bot 108(2):307–319. https://doi.org/10.1093/aob/mcr161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhães TA, Oliveira DC, Suzuki AYM, Isaias RMS (2014) Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC (Asteraceae). Protoplasma 251:747–753

    Article  PubMed  Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan protein in plant development. Plant Physiol 122:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani MS (1964) Ecology of plant galls. Dr. W Junk, The Hague

    Book  Google Scholar 

  • Marcus SE, Verhertbruggen Y, Herve C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert A, Gilbert HJ, Willats WGT, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 61:191–203

    Article  CAS  Google Scholar 

  • Mastroberti AA, Mariath JEA (2008) Developmental of mucilage cells of Araucaria angustifolia (Araucariaceae). Protoplasma 232:233–245

    Article  CAS  PubMed  Google Scholar 

  • McCann MC, Knox JP (2018) Plant cell wall biology: polysaccharides in architectural and developmental contexts. Ann Plant Rev 41:343–366

    Article  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  CAS  PubMed  Google Scholar 

  • Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termacarphi Pty Ltd, Melbourne

    Google Scholar 

  • Oliveira DC, Isaias RMS (2010) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248

    Article  Google Scholar 

  • Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? Protoplasma 242:81–93

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Carneiro RGS, Magalhães TA, Isaias RMS (2011a) Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae) Cecidomyiidae gall systems. Protoplasma 248:829–837

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos-Filho JP (2011b) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? Plant Sci 180:489–495

    Article  PubMed  CAS  Google Scholar 

  • Oliveira DC, Magalhães TA, Ferreira BG, Teixeira CT, Formiga AT, Fernandes GW, Isaias RMS (2014) Variation in the degree of pectin methylesterification during the development of Baccharis dracunculifolia kidney-shaped gall. PLoS One 9:e94588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113

    Article  CAS  PubMed  Google Scholar 

  • Razem FA, Davis AR (1999) Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 206:57–72

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabba RP, Lulai EC (2005) Immunocytological analysis of potato tuber periderm and changes in pectin and extensin epitopes associated with periderm maturation. J Am Soc Hortic Sci 130:936–942

    Article  CAS  Google Scholar 

  • Sala K, Malarz K, Barlow PW, Kurczyńska EU (2017) Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development. BMC Plant Biology 17:25. https://doi.org/10.1186/s12870-016-0949-3

  • Santos HP, Purgatto E, Mercier H, Buckeridge MS (2004) The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril. Plant Physiol 135:287–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler TM, Bergfeld R, Van Cutsem P, von Sengbusch D, Schopfer P (1995) Distribution of pectins in cell walls of maize coleoptiles and evidence against their involvement in auxin-induced extension growth. Protoplasma 188:213–224

    Article  CAS  Google Scholar 

  • Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects – nature’s most sophisticated herbivores. Basic Appl Ecol 6:407–411

    Article  Google Scholar 

  • Smallwood M, Yates EA, Willats WG, Martin H, Knox JP (1996) Immunochemical comparison of membrane associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459

    Article  CAS  Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  • Suzuki AYM, Bedetti CS, Isaias RMS (2015) Detection and distribution of cell growth regulators and cellulose microfibrils during the development of Lopesia sp. galls on Lonchocarpus cultratus (Fabaceae). Botany 93:435–444

    Article  CAS  Google Scholar 

  • Thomas E, Konar RN, Street HE (1972) The fine structure of the embryogenic callus of Ranunculus sceleratus L. J Cell Sci 11:95–109

    CAS  PubMed  Google Scholar 

  • Vecchi C, Menezes NL, Oliveira DC, Ferreira BG, Isaias RMS (2013) The redifferentiation of nutritive cells in galls induced by Lepidoptera on Tibouchina pulchra (Cham.) Cogn. reveals predefined patterns of plant development. Protoplasma 250:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Weischer B, Wyss U (1976) Feeding behaviour and pathogenicity of Xiphinema index on grapevine roots. Nematol 22:319–325

    Article  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of monoclonal antibody specific to (1-5)-α-L-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Limberg G, Buchholt HC, Vanalebeeck GJ, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defines oligossaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320

    Article  CAS  PubMed  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001a) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001b) Modulation of the degree and pattern of methylesterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, McCarney L, Steele-King CG, Marcus SE, Mort A, Huisman M, van Alebeek G-J, Schols HA, Voragen AGJ, Le Goff A, Bonnin E, Thibault J-F, Knox JP (2004) A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218:673–681

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:169–175

    Article  CAS  Google Scholar 

  • Wyss U (1997) Root parasitic nematodes: an overview. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions. Kluwer Academic Publishers, Dordrecht, pp 5–22

    Chapter  Google Scholar 

  • Yates EA, Valdor JF, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Yuan S, Wang X, Zhang Y, Zhu H, Lu C (2008) Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. Plant Physiol 147:1874–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project is financially supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (process number APQ-02617-15). The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) also financially supported this study and provided posdoctoral grant to BGF (process number 171182/2017-0) and researcher grant to RMSI (process number 307011/2015-1).

Author information

Authors and Affiliations

Authors

Contributions

BGF and RMSI conceived and designed the research. BGF and GPB conducted the experiments. All authors analyzed the data, wrote and reviewed the manuscript, and read and approved the final version.

Corresponding author

Correspondence to Rosy M. S. Isaias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, B.G., Bragança, G.P. & Isaias, R.M.S. Cytological attributes of storage tissues in nematode and eriophyid galls: pectin and hemicellulose functional insights. Protoplasma 257, 229–244 (2020). https://doi.org/10.1007/s00709-019-01431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01431-w

Keywords

Navigation