Skip to main content

Advertisement

Log in

Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Samantray B (2015) Microbial mobilization of soil phosphorous and sustainable P management in agricultural soils. Curr Sci India 108(7):1280–1287

    CAS  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2007) Phosphate solubilization activity of rhizobia native to Iranian soils. In: Velazquez E, Rodriguez-Berrueco C (eds) Book Series: Developments in Plant and Soil Sciences. Springer, The Netherlands, pp 35–41

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria with non-legumes: effect on radishes (Raphanus sativus L.) Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Anzuay MS, Ludueña LM, Angelini JG, Fabra A, Taurian T (2015) Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L) growth and phosphorus acquisition. Symbiosis 66:89–97. doi:10.1007/s13199-015-0337-z

    Article  CAS  Google Scholar 

  • Balamurugan A, Princy T, Vidhya Pallavi R, Nepolean P, Jayanthi R, Premkumar R (2010) Isolation and characterization of phosphate solubilizing bacteria in tea (Camellia sinensis). J Biosci 1:285–293

    Google Scholar 

  • Bashan Y, Kamnev AA, de- Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fert Soils 49:465–479

    Article  CAS  Google Scholar 

  • Basu M, Bhadoria PBS, Mahapatra SC (2008) Growth, nitrogen fixation, yield and kernel quality of peanut in response to lime, organic and inorganic fertilizer levels. Bioresour Technol 99:4675–4683

    Article  CAS  PubMed  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–42

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Nothern Thailand. World J Microbiol Biotechnol 25:305–314

    Article  CAS  Google Scholar 

  • Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 8:133–144

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Fearnside PM (1998) Phosphorous and human carrying capacity in Brazilian Amazonia. In: Lynch JP, Deikman J (eds) Phosphorous in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society Plant Physiology, Rockville, pp 94–108

    Google Scholar 

  • Fernández LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fert Soils 43:805–809

    Article  Google Scholar 

  • Goldstein AH (1986) Bacterial mineral phosphate solubilization: historical perspective and future prospects. Am J Altern Agric 1:57–65

    Article  Google Scholar 

  • Goldstein AH (2001) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. IFA technical conference, New Orleans

    Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velazquez E, Rodriguez-Barrueco C (eds) First International Meeting on Microbial phosphate solubilization. Springer, Dordrecht, pp 91–96

    Chapter  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    Article  CAS  PubMed  Google Scholar 

  • Jackson MH (1967) Soil chemical analysis. Prentice-Hall of India, New Delhi

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jensen RB, Dam M, Gerdes K (1994) Partitioning of plasmid R1. The parA operon is autoreguated by ParR and its transcription is highly stimulated by a downstream activating element. J Mol Biol 236:1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Jimenez DJ, Montana JS, Martinez MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown colombian soils. Braz J Microbiol 42:846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora M (2008) Isolation of culturable phosphobacteria with both phytatemineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fert Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Karmakar S, Mittra BN, Ghosh BC (1997) Comparative efficiency of organic and industrial wastes in improving productivity of acid lateritic soil under rice-groundnut cropping system. First All India Peoples’ Technology Congress, February 21–23, Calcutta, pp 24–27

    Google Scholar 

  • Kaur G, Sudhakara Reddy M (2014) Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Arch Agron Soil Sci 60:549–564

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fert Soils 28:301–305

    Article  CAS  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Arch Microbiol 193:527–541

    Article  CAS  PubMed  Google Scholar 

  • Maheshkumar KS, Krishnaraj PU, Alagawadi AR (1999) Mineral phosphate solubilizing activity of Acetobacter diazotrophicus: a bacterium associated with sugarcane. Curr Sci India 76:874–875

    Google Scholar 

  • Merbach W, Deubel A, Gransee A, Ruppel S, Klamroth A-K (2010) Phosphorus solubilization in the rhizosphere and its possible importance to determine phosphate plant availability in soil. A review with main emphasis on German results. Arch Agron Soil Sci 56:119–138

    Article  CAS  Google Scholar 

  • Mitra GN, Misra UK, Sahu SK (2002) Macro and micronutrient status of soils of Orissa. IFFCO, Kolkata

    Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M, Heidari GR, Sohrabi Y (2011) Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L.) Afr J Biotechnol 10:6011–6020

    Google Scholar 

  • Mohsin MA, Sarkar AK, Mathur BS (1995) Acid soil management. Kalyani Publishers, New Delhi

    Google Scholar 

  • Nautiyal CS (1999) An efficient micobiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46:707–715

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties, vol 9, 2nd edn. American Society of Agronomy, Madison, WI, pp 403–430

    Google Scholar 

  • PageAL, MillerRH, KeenyDR (1982) Methods of soil and plant analysis, part-2,2nd Edn. No (9) Part in the series, American Society of Agronomy, Inc. Soil Science Society of American Journal. Madison, Wisconsin, U.S.A.

  • ParidaD, PatroH, SenapatiAK(2011) Status of groundnut cultivation. Glimpses of Groundnut Research in Orissa pp 3–6

  • Park K-H, Lee O-M, Jung H-I, Jeong J-H, Jeon Y-D, Hwang D-Y, Lee C-Y, Son H-J (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–955

    Article  CAS  PubMed  Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzabál LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-Associated Bacteria. Springer, Netherlands, pp 195–230

    Chapter  Google Scholar 

  • Raychaudhury M, Ngachan SV, Raychaudhury S, Singh AL (2003) Yield response of groundnut to dual inoculation and liming of an acid hill Ultisol of Manipur. Indian J Agric Sci 73:86–88

    Google Scholar 

  • Rendig VV, Taylor HM (1989) Principles of soil–plant interrelationships. McGraw–Hill, New York, p 20

    Google Scholar 

  • Reyes I, Alvarez L, El-ayoubi H, Valery A (2008) Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro 20:37–48

    Google Scholar 

  • Richardson A (2001) Prospect for using soil microorganisms to improve the acquisition of phosphorous by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Saber K, Nahla I, Ahmed D, Chedly A (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    Article  Google Scholar 

  • Sagervanshi A, Kumari P, Nagee A, Kumar A (2012) Isolation and characterization of phosphate solubilizing bacteria from Anand agricultural soil. Int J Life SciPharma Res 2:256–266

    CAS  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    CAS  PubMed  Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    Article  CAS  PubMed  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Tripura C, Sashidhar B, Podile AR (2007) Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol 54:79–84

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Ataoğlu N, Şahin F (2007) Effects of Bacillus FS-3 on growth of tomato (Lycopersicon esculentum L.) plants and availability of phosphorus in soil. Plant Soil Environ 53:58–64

    CAS  Google Scholar 

  • Walpola BC, Yoon MH (2013) Prospectus of phosphate solubilizing microorganisms and phosphorous availability in agricultural soils: a review. Afr J Microbiol Res 6:6600–6605

    Google Scholar 

  • Walpola BC, Keum M-J, Yoon MH (2012) Influence of different pH conditions and phosphate sources on phosphate solubilization by Pantoea agglomerans DSM3493. Korean J Soil Sci Fert 45:998–1003

    Article  CAS  Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA, Rejali F (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15:1310–1318

    CAS  Google Scholar 

  • Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot-London 106:183–184. doi:10.1093/aob/mcq134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Mohanty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, M., Sahoo, R.K., Pradhan, C. et al. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.). Protoplasma 254, 2225–2236 (2017). https://doi.org/10.1007/s00709-017-1112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1112-1

Keywords

Navigation