Skip to main content
Log in

On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Vibrational behavior of a functionally graded graphene nanoplatelets-reinforced porous nanocomposite (FG GNPs-RPN) annular microplate with piezoelectric/metallic coverings is carried out in the current work in asymmetric condition. The microstructure is sited on Kerr elastic substrate and also is in a thermoelectrical media. The core’s properties are varied over the thickness path based on different assumed forms. To determine the core’s effective properties, Gaussian random field scheme, Halpin–Tsai, and extended rule of mixture models are appointed. Also, Gurtin–Murdoch and modified strain gradient theories are occupied to consider surface stress and small-scale impacts, respectively. The derivation process of the governing equations and associated boundary conditions was conducted via Hamilton’s principle. Generalized differential quadrature scheme is chosen to attain the results. By validating the results’ precision, the effects of different parameters on the frequencies are observed. It is perceived that adding GNPs enhances the frequencies by about 20–28%, and increasing porosity up to seventy percent leads the frequencies to decrease by about 8–15%. The simpler models of the under-evaluation microstructure are used in different productions; thus, the current model can be used to move on the edge of knowledge and future uses in numerous industries based on the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z., Kuai, H.: Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading. Structures 45, 1561–1572 (2022). https://doi.org/10.1016/j.istruc.2022.09.094

    Article  Google Scholar 

  2. Tian, L., Li, M., Li, L., Li, D., Bai, C.: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Walled Struct. 182, 110219 (2023). https://doi.org/10.1016/j.tws.2022.110219

    Article  Google Scholar 

  3. Torabipour, A., Asghari, N., Haghighi, H., Yaghoubi, S., Urgessa, G.: Assessing effectiveness of shape memory alloys on the response of bolted T-stub connections subjected to cyclic loading. Civ. Eng. 4, 105–133 (2023). https://doi.org/10.3390/civileng4010008

    Article  Google Scholar 

  4. Pan, X., Wu, W., Yu, X., Lu, L., Guo, C., Zhao, Y.: Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 °C. Supercond. Sci. Technol. 36, 034004 (2023). https://doi.org/10.1088/1361-6668/acb740

    Article  Google Scholar 

  5. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L., Zhao, W.: Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2, 1582–1593 (2020). https://doi.org/10.1016/J.MATT.2020.04.001

    Article  Google Scholar 

  6. Zhang, C., Chen, W., Zhang, C.: On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Phys. Lett. A. 376, 3281–3286 (2012). https://doi.org/10.1016/J.PHYSLETA.2012.09.027

    Article  Google Scholar 

  7. Vosoughkhosravi, S., Dixon-Grasso, L., Jafari, A.: The impact of LEED certification on energy performance and occupant satisfaction: A case study of residential college buildings. J. Build. Eng. 59, 105097 (2022). https://doi.org/10.1016/j.jobe.2022.105097

    Article  Google Scholar 

  8. Vosoughkhosravi, S., Jafari, A.: Using Wi-Fi position system for developing a privacy-preserving contact tracing system in university campuses. In: Computing in Civil Engineering 2021, pp. 1236–1244. American Society of Civil Engineers, Reston (2022)

  9. Vosoughkhosravi, S., Jafari, A.: Developing a conceptual passive contact tracing system for commercial buildings using WiFi indoor positioning. Sustainability 14, 10255 (2022). https://doi.org/10.3390/su141610255

    Article  Google Scholar 

  10. Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10, 775–787 (2008). https://doi.org/10.1002/adem.200800241

    Article  Google Scholar 

  11. Zhang, Y., Liu, G., Ye, J., Lin, Y.: Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos. Struct. 299, 116087 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.116087

    Article  Google Scholar 

  12. Ebrahimi, F., Dabbagh, A., Taheri, M.: Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Eng. Comput. 374(37), 3727–3739 (2020). https://doi.org/10.1007/S00366-020-01031-W

    Article  Google Scholar 

  13. Yang, Y., Zhao, M., Lai, L.: Surface activity, micellization, and application of nano-surfactants—amphiphilic carbon dots. Carbon N. Y. 202, 398–413 (2023). https://doi.org/10.1016/j.carbon.2022.11.012

    Article  Google Scholar 

  14. Amari, A., Hassan, Z.K., Al-Bahrani, M., Saberi, L., Maktoof, M.A.J.: Practical parameter tuning toward enhancing thermomechanical shock resistance of the nanocomposite structure. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2145531

    Article  Google Scholar 

  15. Zhang, Z., Yang, Q., Yu, Z., Wang, H., Zhang, T.: Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding. Mater. Charact. 189, 111962 (2022). https://doi.org/10.1016/j.matchar.2022.111962

    Article  Google Scholar 

  16. Luo, Z.-Z., Cai, S., Hao, S., Bailey, T.P., Luo, Y., Luo, W., Yu, Y., Uher, C., Wolverton, C., Dravid, V.P., Zou, Z., Yan, Q., Kanatzidis, M.G.: Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. Energy Environ. Sci. 15, 368–375 (2022). https://doi.org/10.1039/D1EE02986J

    Article  Google Scholar 

  17. Zhu, H., Zhao, R.: Isolated Ni atoms induced edge stabilities and equilibrium shapes of CVD-prepared hexagonal boron nitride on the Ni(111) surface. New J. Chem. 46, 17496–17504 (2022). https://doi.org/10.1039/D2NJ03735A

    Article  Google Scholar 

  18. Yanase, K., Moriyama, S., Ju, J.W.: Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech. 224, 1351–1364 (2013). https://doi.org/10.1007/s00707-013-0808-3

    Article  Google Scholar 

  19. Xiao, X., Zhang, Q., Zheng, J., Li, Z.: Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading. Eng. Struct. 282, 115780 (2023). https://doi.org/10.1016/j.engstruct.2023.115780

    Article  Google Scholar 

  20. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  21. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017). https://doi.org/10.1016/j.compscitech.2017.02.008

    Article  Google Scholar 

  22. Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Technol. (2021). https://doi.org/10.1016/j.ast.2021.106561

    Article  Google Scholar 

  23. Zhao, T.Y., Wang, Y.X., Yu, Y.X., Cai, Y., Wang, Y.Q.: Modeling and vibration analysis of a spinning assembled beam–plate structure reinforced by graphene nanoplatelets. Acta Mech. 232, 3863–3879 (2021). https://doi.org/10.1007/s00707-021-03039-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Reddy, A.L.M., Gowda, S.R., Shaijumon, M.M., Ajayan, P.M.: Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045–5064 (2012). https://doi.org/10.1002/adma.201104502

    Article  Google Scholar 

  25. Kubik, T., Bogunia-Kubik, K., Sugisaka, M.: Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol. 6, 17–33 (2016). https://doi.org/10.2174/1389201053167248

    Article  Google Scholar 

  26. Zhang, W., Ma, H., Wang, Y.: Stability and vibration of nanocomposite microbeams reinforced by graphene oxides using an MCST-based improved shear deformable computational framework. Acta Mech. (2022). https://doi.org/10.1007/s00707-022-03467-1

    Article  MATH  Google Scholar 

  27. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955). https://doi.org/10.1063/1.1721956

    Article  MathSciNet  MATH  Google Scholar 

  28. Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. Anal. Des Methods (1993). https://doi.org/10.1016/B978-0-08-040615-2.50011-3

    Article  Google Scholar 

  29. Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R., Eslami, M.R.: Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression. Int. J. Mech. Sci. 70, 50–56 (2013)

    Article  MATH  Google Scholar 

  30. Zhou, K., Huang, X., Tian, J., Hua, H.: Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation. Compos. Struct. 204, 63–79 (2018). https://doi.org/10.1016/j.compstruct.2018.07.057

    Article  Google Scholar 

  31. Rezaei, A.S., Saidi, A.R.: Exact solution for free vibration of thick rectangular plates made of porous materials. Compos. Struct. 134, 1051–1060 (2015). https://doi.org/10.1016/j.compstruct.2015.08.125

    Article  Google Scholar 

  32. Wang, Y.Q., Wan, Y.H., Zhang, Y.F.: Vibrations of longitudinally traveling functionally graded material plates with porosities. Eur. J. Mech. A Solids 66, 55–68 (2017). https://doi.org/10.1016/j.euromechsol.2017.06.006

    Article  MathSciNet  MATH  Google Scholar 

  33. Rezaei, A.S., Saidi, A.R.: An analytical study on the free vibration of moderately thick fluid-infiltrated porous annular sector plates. J. Vib. Control 24, 4130–4144 (2018). https://doi.org/10.1177/1077546317721416

    Article  MathSciNet  Google Scholar 

  34. Safarpour, H., Mohammadi, K., Ghadiri, M., Barooti, M.M.: Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int. J. Struct. Stab. Dyn. (2018). https://doi.org/10.1142/S0219455418501237

    Article  MathSciNet  Google Scholar 

  35. Ebrahimi, F., Hashemabadi, D., Habibi, M., Safarpour, H.: Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst. Technol. 26, 461–473 (2020). https://doi.org/10.1007/s00542-019-04542-9

    Article  Google Scholar 

  36. Zhang, G., Xiao, C., Rahimi, A., Safarpour, M.: Thermal and mechanical buckling and vibration analysis of FG-GPLRC annular plate using higher order shear deformation theory and generalized differential quadrature method. Int. J. Appl. Mech. (2020). https://doi.org/10.1142/S1758825120500192

    Article  Google Scholar 

  37. Yaghoobi, H., Taheri, F.: Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 252, 112700 (2020). https://doi.org/10.1016/j.compstruct.2020.112700

    Article  Google Scholar 

  38. Yang, Y., Chen, B., Lin, W., Li, Y., Dong, Y.: Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp. Sci. Technol. 110, 106495 (2021). https://doi.org/10.1016/j.ast.2021.106495

    Article  Google Scholar 

  39. Anirudh, B., Ganapathi, M., Anant, C., Polit, O.: A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: bending, vibration and buckling. Compos. Struct. 222, 110899 (2019). https://doi.org/10.1016/j.compstruct.2019.110899

    Article  Google Scholar 

  40. Shahverdi, H., Barati, M.R.: Vibration analysis of porous functionally graded nanoplates. Int. J. Eng. Sci. 120, 82–99 (2017). https://doi.org/10.1016/j.ijengsci.2017.06.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019). https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  42. Shojaeefard, M.H., Saeidi Googarchin, H., Ghadiri, M., Mahinzare, M.: Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl. Math. Model. 50, 633–655 (2017). https://doi.org/10.1016/J.APM.2017.06.022

    Article  MathSciNet  MATH  Google Scholar 

  43. Duc, N.D., Quang, V.D., Nguyen, P.D., Chien, T.M.: Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads. J. Appl. Comput. Mech. 4, 245–259 (2018). https://doi.org/10.22055/jacm.2018.23219.1151

    Article  Google Scholar 

  44. Zhang, C., Wang, L., Eyvazian, A., Khan, A., Sebaey, T.A.: Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG-GPLs patches exposed to longitudinal magnetic field. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01361-3

    Article  Google Scholar 

  45. Zenkour, A.M., Aljadani, M.H.: Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur. J. Mech. A Solids 78, 103835 (2019). https://doi.org/10.1016/j.euromechsol.2019.103835

    Article  MathSciNet  MATH  Google Scholar 

  46. Aditya Narayan, D., Ben Zineb, T., Polit, O., Pradyumna, B., Ganapathi, M.: Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory. Int. J. Non. Linear. Mech. 116, 302–317 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.07.010

    Article  Google Scholar 

  47. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  48. Liu, Z., Yang, C., Gao, W., Wu, D., Li, G.: Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int. J. Eng. Sci. 137, 37–56 (2019). https://doi.org/10.1016/j.ijengsci.2018.12.003

    Article  MathSciNet  MATH  Google Scholar 

  49. Polit, O., Anant, C., Anirudh, B., Ganapathi, M.: Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos. Part B Eng. 166, 310–327 (2019). https://doi.org/10.1016/j.compositesb.2018.11.074

    Article  Google Scholar 

  50. Liu, H., Wu, H., Lyu, Z.: Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp. Sci. Technol. 98, 105702 (2020). https://doi.org/10.1016/j.ast.2020.105702

    Article  Google Scholar 

  51. Ma, R., Jin, Q.: Stability of functionally graded graphene-reinforced composite laminated thick plates in thermal environment. Acta Mech. 233, 3977–3996 (2022). https://doi.org/10.1007/s00707-022-03300-9

    Article  MathSciNet  MATH  Google Scholar 

  52. Gao, K., Gao, W., Chen, D., Yang, J.: Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct. 204, 831–846 (2018). https://doi.org/10.1016/j.compstruct.2018.08.013

    Article  Google Scholar 

  53. Zeng, S., Wang, B.L., Wang, K.F.: Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos. Struct. 207, 340–351 (2019). https://doi.org/10.1016/j.compstruct.2018.09.040

    Article  Google Scholar 

  54. Arshid, E., Amir, S., Loghman, A.: Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-composite layers. J. Sandw. Struct. Mater. (2020). https://doi.org/10.1177/1099636220955027

    Article  Google Scholar 

  55. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Amir, S., Civalek, Ö.: Vibration analysis of graphene nanoplatelets’ reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media. Waves Random Complex Med. (2021). https://doi.org/10.1080/17455030.2021.1956017

    Article  Google Scholar 

  56. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    Article  MATH  Google Scholar 

  57. Malekzadeh, P., Setoodeh, A.R., Shojaee, M.: Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput. Methods Appl. Mech. Eng. 340, 451–479 (2018). https://doi.org/10.1016/j.cma.2018.06.006

    Article  MathSciNet  MATH  Google Scholar 

  58. Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Compos. Part B Eng. 169, 174–188 (2019). https://doi.org/10.1016/j.compositesb.2019.02.048

    Article  Google Scholar 

  59. Arani, A.G., Jafari, G.S., Kolahchi, R.: Vibration analysis of nanocomposite microplates integrated with sensor and actuator layers using surface SSDPT. Polym. Compos. 39, 1936–1949 (2018). https://doi.org/10.1002/pc.24150

    Article  Google Scholar 

  60. Yi, H., Sahmani, S., Safaei, B.: On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch. Civ. Mech. Eng. 20, 1–23 (2020). https://doi.org/10.1007/s43452-020-00047-9

    Article  Google Scholar 

  61. Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006). https://doi.org/10.1016/J.IJSOLSTR.2005.07.036

    Article  MATH  Google Scholar 

  62. Lü, C.F., Chen, W.Q., Lim, C.W.: Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos. Sci. Technol. 69, 1124–1130 (2009). https://doi.org/10.1016/j.compscitech.2009.02.005

    Article  Google Scholar 

  63. Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008). https://doi.org/10.1016/j.ijsolstr.2007.08.006

    Article  MATH  Google Scholar 

  64. Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W., Chen, L.-Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020). https://doi.org/10.1016/j.ymssp.2019.106490

    Article  Google Scholar 

  65. Saberi, L., Nahvi, H.: Vibration analysis of a nonlinear system with a nonlinear absorber under the primary and super-harmonic resonances (TECHNICAL NOTE). Int. J. Eng. 27, 499–508 (2014). https://doi.org/10.5829/idosi.ije.2014.27.03c.18

    Article  Google Scholar 

  66. Shahsavari, D., Karami, B., Fahham, H.R., Li, L.: On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mech. 229, 4549–4573 (2018). https://doi.org/10.1007/s00707-018-2247-7

    Article  MathSciNet  Google Scholar 

  67. Xiao, X., Zhang, H., Li, Z., Chen, F.: Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading. Math. Probl. Eng. 2022, 1–14 (2022). https://doi.org/10.1155/2022/7034588

    Article  Google Scholar 

  68. He, Y., Wang, F., Du, G., Pan, L., Wang, K., Gerhard, R., Plath, R., Rozga, P., Trnka, P.: Revisiting the thermal ageing on the metallised polypropylene film capacitor: from device to dielectric film. High Volt. (2022). https://doi.org/10.1049/hve2.12278

    Article  Google Scholar 

  69. Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014). https://doi.org/10.1016/j.ast.2014.04.005

    Article  Google Scholar 

  70. Ebrahimi, F., Barati, M.R.: Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory. Int. J. Smart Nano Mater. 7, 119–143 (2016). https://doi.org/10.1080/19475411.2016.1223203

    Article  Google Scholar 

  71. Arshid, E., Kiani, A., Amir, S., Zarghami Dehaghani, M.: Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 5659–5675 (2019). https://doi.org/10.1177/0954406219850598

    Article  Google Scholar 

  72. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F., Xiao, X.: Numerical study on welding residual stress distribution of corrugated steel webs. Metals (Basel) 12, 1831 (2022). https://doi.org/10.3390/met12111831

    Article  Google Scholar 

  73. Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Compos. Part B Eng. 51, 175–184 (2013). https://doi.org/10.1016/j.compositesb.2013.02.027

    Article  Google Scholar 

  74. Lal, R., Rani, R.: On the use of differential quadrature method in the study of free axisymmetric vibrations of circular sandwich plates of linearly varying thickness. J. Vib. Control 22, 1729–1748 (2016). https://doi.org/10.1177/1077546314544695

    Article  MathSciNet  Google Scholar 

  75. Ghorbanpour Arani, A., Maboudi, M., Ghorbanpour Arani, A., Amir, S.: 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets. J. Solid Mech. 5, 193–205 (2013)

    Google Scholar 

  76. Arshid, E., Khorshidvand, A.R.: Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin Walled Struct. 125, 220–233 (2018). https://doi.org/10.1016/j.tws.2018.01.007

    Article  Google Scholar 

  77. Vera, S.A., Sanchez, M.D., Laura, P.A.A., Vega, D.A.: Transverse vibrations of circular, annular plates with several combinations of boundary conditions. J. Sound Vib. 213, 757–762 (1998)

    Article  Google Scholar 

  78. Singh, B., Chakraverty, S.: Transverse vibration of annular circular and elliptic plates using the characteristic orthogonal polynomials in two dimensions. J. Sound Vib. 162, 537–546 (1993)

    Article  MATH  Google Scholar 

  79. Selmane, A., Lakis, A.A.: Natural frequencies of transverse vibrations of non-uniform circular and annular plates. J. Sound Vib. 220, 225–249 (1999)

    Article  Google Scholar 

  80. Ke, L.L., Yang, J., Kitipornchai, S., Bradford, M.A.: Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos. Struct. 94, 3250–3257 (2012). https://doi.org/10.1016/j.compstruct.2012.04.037

    Article  Google Scholar 

  81. Arshid, E., Amir, S., Loghman, A.: Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 180, 105656 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105656

    Article  Google Scholar 

  82. Sharifi, Z., Khordad, R., Gharaati, A., Forozani, G.: An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory. Appl. Math. Mech. 40, 1723–1740 (2019). https://doi.org/10.1007/s10483-019-2545-8

    Article  MathSciNet  MATH  Google Scholar 

  83. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A., Kolahchi, R.: A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment. Adv. Nano Res. 6, 299–321 (2018). https://doi.org/10.12989/anr.2018.6.4.299

    Article  Google Scholar 

  84. Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 3458–3475 (2012). https://doi.org/10.1098/RSPA.2012.0214

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Amir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The used stress resultants in Eqs. (61)–(79) are defined as:

$$\left\{ {\begin{array}{*{20}c} {N_{rr} ,} & {M_{rr} } \\ \end{array} } \right\} = \int {\sigma_{rr} \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z + \left\{ {\begin{array}{*{20}c} {\left( {\sigma_{rr}^{t} + \sigma_{rr}^{b} } \right),} & {\frac{h}{2}\left( {\sigma_{rr}^{t} - \sigma_{rr}^{b} } \right)} \\ \end{array} } \right\},$$
$$\left\{ {\begin{array}{*{20}c} {N_{\theta \theta } ,} & {M_{\theta \theta } } \\ \end{array} } \right\} = \int {\sigma_{\theta \theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z + \left\{ {\begin{array}{*{20}c} {\left( {\sigma_{\theta \theta }^{t} + \sigma_{\theta \theta }^{b} } \right),} & {\frac{h}{2}\left( {\sigma_{\theta \theta }^{t} - \sigma_{\theta \theta }^{b} } \right)} \\ \end{array} } \right\},$$
$$\begin{aligned} & \left\{ {\begin{array}{*{20}c} {N_{r\theta } ,} & {M_{r\theta } } \\ \end{array} } \right\} = \int {\sigma_{r\theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad \quad \quad \quad \quad \quad \quad\quad \quad + \left\{ {\begin{array}{*{20}c} {\frac{1}{2}\left( {\sigma_{r\theta }^{t} + \sigma_{r\theta }^{b} + \sigma_{\theta r}^{t} + \sigma_{\theta r}^{b} } \right),} & {\frac{h}{2}\left( {\sigma_{r\theta }^{t} - \sigma_{r\theta }^{b} + \sigma_{\theta r}^{t} - \sigma_{\theta r}^{b} } \right)} \\ \end{array} } \right\}, \\ \end{aligned}$$
$$Q_{r} = \int {\sigma_{rz} } \,{\text{d}}z + \left( {\tau_{s}^{t} + \tau_{s}^{b} } \right)\frac{\partial w}{{\partial r}},\;\;Q_{\theta } = \int {\sigma_{\theta z} } \,{\text{d}}z + \left( {\tau_{s}^{t} + \tau_{s}^{b} } \right)\frac{1}{r}\frac{\partial w}{{\partial \theta }},$$
$$\left\{ {\begin{array}{*{20}l} {Y_{1} ,} \hfill & {Y_{2} ,} \hfill & {Y_{3} ,} \hfill & {Y_{4} ,} \hfill & {Y_{5} } \hfill \\ \end{array} } \right\} = \int {\left\{ {\begin{array}{*{20}l} {m_{rr} ,} \hfill & {m_{\theta \theta } ,} \hfill & {m_{zz} ,} \hfill & {m_{r\theta } ,} \hfill & {m_{\theta z} } \hfill \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {Y_{6} ,} & {Y_{8} } \\ \end{array} } \right\} = \int {\left\{ {\begin{array}{*{20}c} {m_{\theta z} ,} & {m_{rz} } \\ \end{array} } \right\}} z\,{\text{d}}z,\;\;Y_{7} = \int {m_{rz} } \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {X_{1} ,} & {X_{3} ,} & {X_{5} } \\ \end{array} } \right\} = \int {\left\{ {\begin{array}{*{20}c} {P_{r} ,} & {P_{\theta } ,} & {P_{z} } \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {X_{2} ,} & {X_{4} } \\ \end{array} } \right\} = \int {\left\{ {\begin{array}{*{20}c} {P_{r} ,} & {P_{\theta } } \\ \end{array} } \right\}} z\,{\text{d}}z,\;\;\left\{ {\begin{array}{*{20}c} {T_{1} ,} & {T_{2} } \\ \end{array} } \right\} = \int {\tau_{rrr} \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {T_{3} ,} & {T_{4} } \\ \end{array} } \right\} = \int {\tau_{\theta \theta \theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$T_{5} = \int {\tau_{zzz} } \,{\text{d}}z,\;\;T_{6} = \int {\tau_{rrz} } \,{\text{d}}z,\;\;T_{6} = \int {\tau_{rrz} } \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {T_{7} ,} & {T_{8} } \\ \end{array} } \right\} = \int {\tau_{r\theta \theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,\;\;\left\{ {\begin{array}{*{20}c} {T_{9} ,} & {T_{10} } \\ \end{array} } \right\} = \int {\tau_{zzr} \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {T_{11} ,} & {T_{12} } \\ \end{array} } \right\} = \int {\tau_{rr\theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,\;\;\left\{ {\begin{array}{*{20}c} {T_{13} ,} & {T_{14} } \\ \end{array} } \right\} = \int {\tau_{zz\theta } \left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$T_{15} = \int {\tau_{\theta \theta z} } \,{\text{d}}z,\;\;T_{16} = \int {\tau_{r\theta z} } \,{\text{d}}z,$$
$$\overline{D}_{r} = \int_{b} {D_{r} \cos \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \,\int_{t} {D_{r} \cos \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$\overline{D}_{\theta } = \int_{b} {D_{\theta } \cos \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \,\int_{t} {D_{\theta } \cos \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$\overline{D}_{z} = \int_{b} {D_{z} \frac{\pi }{{h_{b} }}\sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \,\int_{t} {D_{z} \frac{\pi }{{h_{t} }}\sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$\begin{aligned} & I_{0} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\rho (z)^{b} } \,{\text{d}}z + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\rho (z)^{c} } \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\rho (z)^{t} } \,{\text{d}}z \\ & \quad\quad \quad + \left\{ {\begin{array}{*{20}c} {\rho_{st}^{b} + \rho_{sb}^{b} ,} & {\rho_{st}^{c} + \rho_{sb}^{c} ,} & {\rho_{st}^{t} + \rho_{sb}^{t} } \\ \end{array} } \right\}, \\ \end{aligned}$$
$$\begin{aligned} & I_{1} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\rho (z)^{b} \,z} \,{\text{d}}z + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\rho (z)^{c} \,z} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\rho (z)^{t} } \,z\,{\text{d}}z \\ & \quad\quad \quad + \left\{ {\begin{array}{*{20}c} { - \left( {\frac{{h_{c} }}{2}} \right)\rho_{st}^{b} - \left( {\frac{{h_{c} }}{2} + h_{b} } \right)\rho_{sb}^{b} ,} & {\left( {\frac{{h_{c} }}{2}} \right)\rho_{st}^{c} - \left( {\frac{{h_{c} }}{2}} \right)\rho_{sb}^{c} ,} & {\left( {\frac{{h_{c} }}{2} + h_{t} } \right)\rho_{st}^{t} + \left( {\frac{{h_{c} }}{2}} \right)\rho_{sb}^{t} } \\ \end{array} } \right\}, \\ \end{aligned}$$
$$\begin{aligned} & I_{2} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\rho (z)^{b} \,z^{2} } \,{\text{d}}z + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\rho (z)^{c} \,z^{2} } \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\rho (z)^{t} } \,z^{2} \,{\text{d}}z \\ & \quad\quad \quad + \left\{ {\begin{array}{*{20}c} {\left( {\frac{{h_{c} }}{2}} \right)^{2} \rho_{st}^{b} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} \rho_{sb}^{b} ,} & {\left( {\frac{{h_{c} }}{2}} \right)^{2} \rho_{st}^{c} + \left( {\frac{{h_{c} }}{2}} \right)^{2} \rho_{sb}^{c} ,} & {\left( {\frac{{h_{c} }}{2} + h_{t} } \right)^{2} \rho_{st}^{t} + \left( {\frac{{h_{c} }}{2}} \right)^{2} \rho_{sb}^{t} } \\ \end{array} } \right\} \\ \end{aligned}$$

in which

$$z_{b} = z + \frac{{h_{c} }}{2} + \frac{{h_{b} }}{2},\;\;z_{t} = z - \frac{{h_{c} }}{2} - \frac{{h_{t} }}{2}$$

Appendix B

The used parameters in Eqs. (82)–(99) are defined as:

$$F_{1} = 2{\mkern 1mu} {\mkern 1mu} l_{0}^{2} + \frac{4}{5}{\mkern 1mu} {\mkern 1mu} l_{1}^{2} ,\;\;F_{2} = 6{\mkern 1mu} l_{0}^{2} - \frac{{4{\mkern 1mu} {\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }},$$
$$F_{3} = \frac{{8{\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} + \frac{{{\mkern 1mu} l_{2}^{2} }}{4},\;\;F_{4} = - 6{\mkern 1mu} l_{0}^{2} + \frac{4}{5}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{5} = 2{\mkern 1mu} l_{0}^{2} + \frac{4}{3}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{6} = 6{\mkern 1mu} l_{0}^{2} + \frac{2}{3}l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{7} = 2{\mkern 1mu} l_{0}^{2} + \frac{{4{\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{8} = 4{\mkern 1mu} l_{0}^{2} + \frac{2}{5}{\mkern 1mu} l_{1}^{2} + \frac{1}{2}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{9} = 2{\mkern 1mu} l_{0}^{2} + \frac{2}{15}{\mkern 1mu} l_{1}^{2} + \frac{3}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{10} = \frac{{8{\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} - \frac{3}{4}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{11} = 2{\mkern 1mu} l_{0}^{2} + \frac{4}{3}{\mkern 1mu} l_{1}^{2} - \frac{3}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{12} = \frac{{11{\mkern 1mu} {\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} + l_{2}^{2} ,$$
$$F_{13} = \frac{{16{\mkern 1mu} l_{1}^{2} }}{15} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{14} = 2{\mkern 1mu} l_{1}^{2} - \frac{1}{2}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{15} = \frac{2}{15}{\mkern 1mu} l_{1}^{2} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{16} = \frac{1}{3}{\mkern 1mu} l_{1}^{2} - \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{17} = \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{18} = \frac{6}{5}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{19} = \frac{{14{\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} - \frac{1}{2}l_{2}^{2} ,\;\;F_{20} = 2{\mkern 1mu} l_{0}^{2} + \frac{{32{\mkern 1mu} {\mkern 1mu} l_{1}^{2} }}{15} + \frac{1}{4}{\mkern 1mu} l_{2}^{2} ,$$
$$F_{21} = 2{\mkern 1mu} l_{0}^{2} + \frac{{8{\mkern 1mu} {\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} + \frac{1}{4}l_{2}^{2} ,\;\;F_{22} = \frac{4}{3}l_{1}^{2} + l_{2}^{2} ,$$
$$F_{23} = 2{\mkern 1mu} l_{0}^{2} + \frac{{26{\mkern 1mu} l_{1}^{2} }}{{15{\mkern 1mu} }} + \frac{5}{4}{\mkern 1mu} l_{2}^{2} ,\;\;F_{24} = 2{\mkern 1mu} l_{0}^{2} + \frac{4}{5}{\mkern 1mu} l_{1}^{2} - \frac{3}{4}l_{2}^{2} ,$$
$$F_{25} = \frac{1}{3}{\mkern 1mu} l_{1}^{2} ,\;\;F_{26} = \frac{1}{3}{\mkern 1mu} l_{1}^{2} + l_{2}^{2} ,$$
$$F_{27} = \frac{2}{5}l_{1}^{2} ,\;\;F_{28} = \frac{8}{15}l_{1}^{2} ,$$
$$F_{29} = \frac{16}{{15}}l_{1}^{2} + \frac{1}{4}l_{2}^{2} ,\;\;F_{30} = l_{0}^{2} - \frac{2}{5}l_{1}^{2} ,$$
$$F_{31} = 3l_{0}^{2} - \frac{4}{15}l_{1}^{2} ,\;\;F_{32} = 2l_{0}^{2} + \frac{6}{5}l_{1}^{2} + \frac{1}{2}l_{2}^{2} ,$$
$$F_{33} = 2l_{0}^{2} - \frac{4}{15}l_{1}^{2} - \frac{1}{8}l_{2}^{2} ,\;\;F_{34} = \frac{2}{5}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{35} = \frac{2}{5}l_{1}^{2} + \frac{1}{2}l_{2}^{2} ,\;\;F_{36} = \frac{4}{15}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{37} = 4l_{0}^{2} + \frac{4}{5}l_{1}^{2} ,\;\;F_{38} = 2l_{0}^{2} - \frac{2}{5}l_{1}^{2} ,$$
$$F_{39} = \frac{8}{15}l_{1}^{2} - \frac{1}{8}l_{2}^{2} ,\;\;F_{40} = \frac{2}{5}l_{1}^{2} - \frac{3}{8}l_{2}^{2} ,$$
$$F_{41} = 4l_{0}^{2} + \frac{22}{{15}}l_{1}^{2} + \frac{1}{4}l_{2}^{2} ,\;\;F_{42} = l_{0}^{2} + \frac{2}{3}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{43} = \frac{4}{3}l_{1}^{2} - \frac{1}{2}l_{2}^{2} ,\;\;F_{44} = \frac{2}{3}l_{1}^{2} + l_{2}^{2} ,$$
$$F_{45} = 2l_{0}^{2} - \frac{8}{15}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,\;\;F_{46} = 2l_{0}^{2} + \frac{16}{{15}}l_{1}^{2} + \frac{1}{4}l_{2}^{2} ,$$
$$F_{47} = 4l_{0}^{2} + \frac{2}{15}l_{1}^{2} ,\;\;F_{48} = l_{0}^{2} - \frac{16}{{15}}l_{1}^{2} - \frac{1}{8}l_{2}^{2} ,$$
$$F_{49} = l_{0}^{2} + \frac{2}{3}l_{1}^{2} + \frac{1}{8}l_{2}^{2} ,\;\;F_{50} = 4l_{0}^{2} + \frac{4}{5}l_{1}^{2} + \frac{1}{8}l_{2}^{2} ,$$
$$F_{51} = \frac{14}{{15}}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,\;\;F_{52} = \frac{8}{15}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{53} = \frac{2}{15}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,\;\;F_{54} = 2l_{0}^{2} - \frac{4}{15}l_{1}^{2} - \frac{1}{4}l_{2}^{2} ,$$
$$F_{55} = l_{0}^{2} + \frac{8}{15}l_{1}^{2} + \frac{1}{2}l_{2}^{2} ,\;\;F_{56} = l_{0}^{2} + \frac{2}{3}l_{1}^{2} + \frac{1}{2}l_{2}^{2} ,$$
$$F_{57} = l_{0}^{2} + \frac{16}{{15}}l_{1}^{2} - \frac{1}{8}l_{2}^{2}$$

And also:

$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{1} ,} & {A_{2} ,} & {A_{5} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{11}^{b} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{11}^{c} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{11}^{t} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{3} ,} & {A_{4} ,} & {A_{6} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{12}^{b} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{12}^{c} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{12}^{t} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{7} ,} & {A_{8} ,} & {A_{11} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{21}^{b} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{21}^{c} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{21}^{t} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{9} ,} & {A_{10} ,} & {A_{12} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{22}^{b} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{22}^{c} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{22}^{t} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {A_{13} ,} & {A_{14} ,} & {A_{15} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{66}^{b} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{66}^{c} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{66}^{t} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}} \,{\text{d}}z, \\ \end{aligned}$$
$$A_{16} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{55}^{b} } \,{\text{d}}z + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{55}^{c} } \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{55}^{t} } \,{\text{d}}z,$$
$$A_{17} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {Q_{44}^{b} } \,{\text{d}}z + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {Q_{44}^{c} } \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {Q_{44}^{t} } \,{\text{d}}z,$$
$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {B_{1} ,} & {B_{2} ,} & {B_{3} } \\ \end{array} } \right\} & = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\mu (z)^{b} } \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}\,{\text{d}}z \\ & \quad\quad + \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\mu (z)^{c} } \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}\,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\mu (z)^{t} } \,\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned}$$
$$P_{1} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{\pi }{{h_{b} }}e_{31} \sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{\pi }{{h_{t} }}e_{31} \sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{2} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{{\pi z_{b} }}{{h_{b} }}e_{31} \sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{{\pi z_{t} }}{{h_{t} }}e_{31} \sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{3} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{\pi }{{h_{b} }}e_{32} \sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{\pi }{{h_{t} }}e_{32} \sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{4} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{{\pi z_{b} }}{{h_{b} }}e_{32} \sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{{\pi z_{t} }}{{h_{t} }}e_{32} \sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{5} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {e_{15} \cos \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {e_{15} \cos \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{6} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {e_{24} \cos \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {e_{24} \cos \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{7} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {s_{11} \cos^{2} \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {s_{11} \cos^{2} \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{8} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {s_{22} \cos^{2} \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {s_{22} \cos^{2} \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{9} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\left( {\frac{{\pi^{2} }}{{h_{b}^{2} }}} \right)s_{33} \sin^{2} \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\left( {\frac{{\pi^{2} }}{{h_{t}^{2} }}} \right)s_{33} \sin^{2} \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z,$$
$$P_{10} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\left( {\frac{\pi }{{h_{b}^{2} }}} \right)s_{33} \sin \left( {\frac{{\pi z_{b} }}{{h_{b} }}} \right)} \,{\text{d}}z + \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\left( {\frac{\pi }{{h_{t}^{2} }}} \right)s_{33} \sin \left( {\frac{{\pi z_{t} }}{{h_{t} }}} \right)} \,{\text{d}}z$$

And for other parameter definition:

$$H_{1} = Q_{11t}^{c} + Q_{11b}^{c} + C_{11t}^{t} + C_{11b}^{t} + C_{11t}^{b} + C_{11b}^{b} ,$$
$$H_{2} = Q_{66t}^{c} + Q_{66b}^{c} + {\mkern 1mu} C_{66t}^{t} + {\mkern 1mu} C_{66b}^{t} + {\mkern 1mu} C_{66t}^{b} + {\mkern 1mu} C_{66b}^{b} ,$$
$$H_{3} = Q_{12t}^{c} + Q_{12b}^{c} + C_{12t}^{t} + C_{12b}^{t} + C_{12t}^{b} + C_{12b}^{b} ,$$
$$H_{4} = \frac{{h_{c} }}{2}\left( {Q_{11b}^{c} - Q_{11t}^{c} } \right){\mkern 1mu} - \frac{{h_{c} }}{2}\left( {C_{11t}^{t} + C_{11b}^{t} } \right) - h_{t} C_{11t}^{t} + \frac{{h_{c} }}{2}\left( {C_{11t}^{b} + C_{11b}^{b} } \right) + h_{b} C_{11b}^{b} ,$$
$$H_{5} = \frac{{h_{c} }}{4}\left( {Q_{66b}^{c} - Q_{66t}^{c} } \right) - \frac{{h_{c} }}{4}\left( {C_{66t}^{t} + C_{66b}^{t} } \right) - \frac{{h_{t} }}{2}C_{66t}^{t} + {\mkern 1mu} \frac{{h_{c} }}{4}\left( {C_{66t}^{b} + C_{66b}^{b} } \right) + \frac{{h_{b} }}{2}C_{66b}^{b} ,$$
$$H_{6} = \frac{{h_{c} }}{2}\left( {Q_{12b}^{c} - Q_{12t}^{c} } \right){\mkern 1mu} - \frac{{h_{c} }}{2}\left( {C_{12t}^{t} + C_{12b}^{t} } \right) - h_{t} C_{12t}^{t} + \frac{{h_{c} }}{2}\left( {C_{12t}^{b} + C_{12b}^{b} } \right) + h_{b} C_{12b}^{b} ,$$
$$H_{7} = \frac{{h_{c}^{2} }}{4}Q_{11t}^{c} + \frac{{h_{c}^{2} }}{4}Q_{11b}^{c} + \left( {\frac{{h_{c} }}{2} + h_{t} {\mkern 1mu} } \right)^{2} C_{11t}^{t} + {\mkern 1mu} \frac{{h_{c}^{2} {\mkern 1mu} }}{4}C_{11b}^{t} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} C_{11b}^{b} + {\mkern 1mu} \frac{{h_{c}^{2} {\mkern 1mu} }}{4}C_{11t}^{b} ,$$
$$H_{8} = \frac{{h_{c}^{2} }}{4}Q_{66t}^{c} + \frac{{h_{c}^{2} }}{4}Q_{66b}^{c} + \left( {\frac{{h_{c} }}{2} + h_{t} {\mkern 1mu} } \right)^{2} \frac{{C_{66t}^{t} }}{2} + \frac{{h_{c}^{2} {\mkern 1mu} }}{8}C_{66b}^{t} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} \frac{{C_{66b}^{b} }}{2} + {\mkern 1mu} \frac{{h_{c}^{2} {\mkern 1mu} }}{8}C_{66t}^{b} ,$$
$$H_{9} = \frac{{h_{c}^{2} }}{4}Q_{12t}^{c} + \frac{{h_{c}^{2} }}{4}Q_{12b}^{c} + \left( {\frac{{h_{c} }}{2} + h_{t} {\mkern 1mu} } \right)^{2} C_{12t}^{t} + {\mkern 1mu} \frac{{h_{c}^{2} {\mkern 1mu} }}{4}C_{12b}^{t} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} C_{12b}^{b} + {\mkern 1mu} \frac{{h_{c}^{2} {\mkern 1mu} }}{4}C_{12t}^{b} ,$$
$$H_{10} = \left( {\frac{{h_{c} }}{2} + h_{b} } \right)\frac{{C_{12b}^{b} }}{2},\;\;H_{11} = \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} \frac{{C_{12b}^{b} }}{2},$$
$$R_{1} = \tau_{st}^{c} + \tau_{sb}^{c} + \tau_{st}^{t} + \tau_{sb}^{t} + \tau_{st}^{b} + \tau_{sb}^{b} ,$$
$$R_{2} = \mu_{st}^{c} + \mu_{sb}^{c} + \mu_{st}^{t} + {\mkern 1mu} \mu_{sb}^{t} + {\mkern 1mu} \mu_{st}^{b} + \mu_{sb}^{b} ,$$
$$\begin{aligned} R_{3} & = S_{1}^{c} \left( {\tau_{sb}^{c} - {\mkern 1mu} \tau_{st}^{c} } \right) + S_{3}^{c} \left( {\tau_{sb}^{c} + {\mkern 1mu} \tau_{st}^{c} } \right) + S_{1}^{t} \left( {{\mkern 1mu} \tau_{sb}^{t} - {\mkern 1mu} \tau_{st}^{t} } \right) \\ & \quad\quad + S_{3}^{t} {\mkern 1mu} \left( {\tau_{sb}^{t} + {\mkern 1mu} \tau_{st}^{t} } \right) + S_{1}^{b} \left( {{\mkern 1mu} \tau_{sb}^{b} - \tau_{st}^{b} } \right) + S_{3}^{b} \left( {{\mkern 1mu} \tau_{sb}^{b} + {\mkern 1mu} \tau_{st}^{b} } \right), \\ \end{aligned}$$
$$R_{4} = \frac{{h_{c} }}{2}\left( {\tau_{st}^{c} - \tau_{sb}^{c} } \right) + \frac{{h_{c} }}{2}\left( {\tau_{st}^{t} + \tau_{sb}^{t} {\mkern 1mu} } \right) + h_{t} {\mkern 1mu} \tau_{st}^{t} - \frac{{h_{c} }}{2}\left( {{\mkern 1mu} \tau_{sb}^{b} + \tau_{st}^{b} } \right) - h_{{b{\mkern 1mu} }} {\mkern 1mu} \tau_{sb}^{b} ,$$
$$R_{5} = \frac{{h_{c} }}{4}\left( {\mu_{st}^{c} - \mu_{sb}^{c} } \right) + \frac{{h_{c} }}{4}\left( {{\mkern 1mu} \mu_{st}^{t} + \mu_{sb}^{t} } \right) + \frac{{h_{t} }}{2}\mu_{st}^{t} - \frac{{h_{c} }}{4}\left( {{\mkern 1mu} \mu_{sb}^{b} + \mu_{st}^{b} } \right) - \frac{{h_{b} }}{2}\mu_{sb}^{b} ,$$
$$\begin{aligned} R_{6} & = S_{1}^{c} {\mkern 1mu} \left( {{\mkern 1mu} \rho_{st}^{c} - \rho_{sb}^{c} } \right) - S_{3}^{c} {\mkern 1mu} \left( {\rho_{sb}^{c} + \rho_{st}^{c} } \right) + S_{1}^{t} {\mkern 1mu} \left( {\rho_{st}^{t} - {\mkern 1mu} \rho_{sb}^{t} } \right) \\ & \quad\quad - S_{3}^{t} \left( {\rho_{st}^{t} {\mkern 1mu} + {\mkern 1mu} \rho_{sb}^{t} } \right){\mkern 1mu} + S_{1}^{b} {\mkern 1mu} \left( {\rho_{st}^{b} {\mkern 1mu} - {\mkern 1mu} \rho_{sb}^{b} } \right){\mkern 1mu} - S_{3}^{b} \left( {{\mkern 1mu} \rho_{st}^{b} + {\mkern 1mu} \rho_{sb}^{b} } \right), \\ \end{aligned}$$
$$\begin{aligned} R_{7} & = S_{2}^{c} {\mkern 1mu} \left( {\tau_{sb}^{c} - \tau_{st}^{c} } \right) + S_{4}^{c} {\mkern 1mu} \left( {\tau_{sb}^{c} + {\mkern 1mu} \tau_{st}^{c} } \right) + S_{2}^{t} {\mkern 1mu} \left( {\tau_{sb}^{t} - {\mkern 1mu} \tau_{st}^{t} } \right) \\ & \quad\quad + S_{4}^{t} \left( {{\mkern 1mu} \tau_{sb}^{t} + {\mkern 1mu} \tau_{st}^{t} } \right) + S_{2}^{b} {\mkern 1mu} \left( {\tau_{sb}^{b} - {\mkern 1mu} \tau_{st}^{b} } \right) + S_{4}^{b} {\mkern 1mu} \left( {\tau_{st}^{b} + {\mkern 1mu} \tau_{sb}^{b} } \right), \\ \end{aligned}$$
$$R_{8} = \frac{{h_{c}^{2} }}{4}\tau_{st}^{c} + \frac{{h_{c}^{2} }}{4}\tau_{sb}^{c} + \left( {\frac{{h_{c} }}{2} + h_{t} {\mkern 1mu} } \right)^{2} \tau_{st}^{t} + {\mkern 1mu} \frac{{h_{c}^{2} }}{4}\tau_{sb}^{t} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} \tau_{sb}^{b} + {\mkern 1mu} \frac{{h_{c}^{2} }}{4}\tau_{st}^{b} ,$$
$$R_{9} = \frac{{h_{c}^{2} }}{4}\mu_{st}^{c} + \frac{{h_{c}^{2} }}{4}\mu_{sb}^{c} + \left( {\frac{{h_{c} }}{2} + h_{t} {\mkern 1mu} } \right)^{2} \frac{{\mu_{st}^{t} }}{2} + {\mkern 1mu} \frac{{h_{c}^{2} }}{8}\mu_{sb}^{t} + \left( {\frac{{h_{c} }}{2} + h_{b} } \right)^{2} \frac{{\mu_{sb}^{b} }}{2} + {\mkern 1mu} \frac{{h_{c}^{2} }}{8}\mu_{st}^{b} ,$$
$$\begin{aligned} R_{10} & = S_{2}^{c} {\mkern 1mu} \left( {\rho_{st}^{c} - \rho_{sb}^{c} } \right) - S_{4}^{c} \left( {\rho_{sb}^{c} + {\mkern 1mu} \rho_{st}^{c} } \right) + S_{2}^{t} {\mkern 1mu} \left( {\rho_{st}^{t} {\mkern 1mu} - {\mkern 1mu} \rho_{sb}^{t} } \right) \\ & \quad\quad - S_{4}^{t} {\mkern 1mu} \left( {\rho_{st}^{t} + {\mkern 1mu} \rho_{sb}^{t} } \right) + S_{2}^{b} {\mkern 1mu} \left( {\rho_{st}^{b} - \rho_{sb}^{b} } \right){\mkern 1mu} - S_{4}^{b} {\mkern 1mu} \left( {\rho_{sb}^{b} + {\mkern 1mu} \rho_{st}^{b} } \right), \\ \end{aligned}$$
$$E_{1} = \frac{{{\mkern 1mu} \pi {\mkern 1mu} }}{{h_{t} }}\left( {e_{31b}^{t} - e_{31t}^{t} } \right){\mkern 1mu} + \frac{\pi }{{h_{b} }}\left( {e_{31b}^{b} - e_{31t}^{b} } \right),$$
$$E_{2} = \frac{{{\mkern 1mu} \pi {\mkern 1mu} }}{{h_{t} }}\left( {e_{32t}^{t} - e_{32b}^{t} } \right){\mkern 1mu} {\mkern 1mu} + \frac{\pi }{{h_{b} }}\left( {e_{32t}^{b} - e_{32b}^{b} } \right),$$
$$E_{3} = \frac{{h_{c} }}{2}\left( {\frac{\pi }{{h_{t} }}\left( {{\mkern 1mu} e_{31b}^{t} - {\mkern 1mu} {\mkern 1mu} e_{31t}^{t} {\mkern 1mu} {\mkern 1mu} + {\mkern 1mu} e_{32t}^{t} - e_{32b}^{t} } \right) + \frac{{\pi {\mkern 1mu} }}{{h_{b} }}\left( {e_{31t}^{b} - {\mkern 1mu} e_{31b}^{b} - {\mkern 1mu} e_{32t}^{b} + {\mkern 1mu} e_{32b}^{b} } \right)} \right),$$
$$E_{4} = {\mkern 1mu} \pi {\mkern 1mu} \left( {e_{32t}^{t} + e_{32b}^{b} - e_{31t}^{t} - e_{31b}^{b} } \right),$$
$$E_{5} = \frac{{h_{c} }}{2}\left( {\frac{\pi }{{h_{t} }}\left( {e_{31b}^{t} - {\mkern 1mu} e_{31t}^{t} {\mkern 1mu} } \right){\mkern 1mu} + \frac{\pi }{{h_{b} }}\left( {{\mkern 1mu} e_{31t}^{b} - e_{31b}^{b} } \right)} \right),$$
$$E_{6} = \pi \left( {e_{31t}^{t} {\mkern 1mu} + e_{31b}^{b} {\mkern 1mu} } \right),\;\;E_{7} = \pi \left( {e_{32t}^{t} + e_{32b}^{b} } \right),$$
$$E_{8} = \frac{{h_{c} }}{2}\left( {\frac{\pi }{{h_{t} }}\left( {e_{32b}^{t} {\mkern 1mu} {\mkern 1mu} - e_{32t}^{t} } \right) + \frac{\pi }{{h_{b} }}\left( {e_{32t}^{b} - {\mkern 1mu} {\mkern 1mu} e_{32b}^{b} {\mkern 1mu} {\mkern 1mu} } \right)} \right),$$
$$E_{9} = \frac{{\pi^{2} }}{{h_{t}^{2} }}\left( {S_{33t}^{t} + S_{33b}^{t} } \right) + \frac{{\pi^{2} }}{{h_{b}^{2} }}\left( {S_{33t}^{b} + S_{33b}^{b} } \right)$$

in which

$$Q_{11t}^{c} = \frac{{E_{tc} }}{{1 - \nu_{tc}^{2} }},\;\;Q_{11b}^{c} = \frac{{E_{bc} }}{{1 - \nu_{bc}^{2} }},$$
$$Q_{12t}^{c} = \lambda_{st}^{c} + \tau_{st}^{c} ,\;\;Q_{12b}^{c} = \lambda_{sb}^{c} + \tau_{sb}^{c} ,$$
$$Q_{66t}^{c} = \mu_{st}^{c} - \tau_{st}^{c} ,\;\;Q_{66b}^{c} = \mu_{sb}^{c} - \tau_{sb}^{c}$$

That:

$$\lambda_{t,b}^{c} = \frac{{\nu_{t,b}^{c} E_{t,b}^{c} }}{{1 - \left( {\nu_{t,b}^{c} } \right)^{2} }},\;\;\mu_{t,b}^{c} = \frac{{E_{t,b}^{c} }}{{2(1 + \nu_{t,b}^{c} )}},$$

And:

$$\left\{ {\begin{array}{*{20}c} {S_{1}^{c} ,} & {S_{2}^{c} } \\ \end{array} } \right\} = \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\frac{{\nu_{c} }}{{2(1 - \nu_{c} )}}\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {S_{3}^{c} ,} & {S_{4}^{c} } \\ \end{array} } \right\} = \int\limits_{{ - h_{c} /2}}^{{ + h_{c} /2}} {\frac{{\nu_{c} }}{{(1 - \nu_{c} )}}g_{1} (z)\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {S_{1}^{t} ,} & {S_{2}^{t} } \\ \end{array} } \right\} = \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{{\nu_{t} }}{{2(1 - \nu_{t} )}}\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,\;\;\left\{ {\begin{array}{*{20}c} {S_{3}^{t} ,} & {S_{4}^{t} } \\ \end{array} } \right\} = \int\limits_{{ + h_{c} /2}}^{{ + h_{c} /2 + h_{t} }} {\frac{{\nu_{t} }}{{(1 - \nu_{t} )}}g_{2} (z)\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {S_{1}^{b} ,} & {S_{2}^{b} } \\ \end{array} } \right\} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{{\nu_{b} }}{{2(1 - \nu_{b} )}}\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z,$$
$$\left\{ {\begin{array}{*{20}c} {S_{3}^{b} ,} & {S_{4}^{b} } \\ \end{array} } \right\} = \int\limits_{{ - h_{c} /2 - h_{b} }}^{{ - h_{c} /2}} {\frac{{\nu_{b} }}{{(1 - \nu_{b} )}}g_{3} (z)\left\{ {\begin{array}{*{20}c} {1,} & z \\ \end{array} } \right\}} \,{\text{d}}z$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshid, E., Amir, S. & Loghman, A. On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects. Acta Mech 234, 4035–4076 (2023). https://doi.org/10.1007/s00707-023-03593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03593-4

Navigation